VIO学习笔记(五)—— 单目 Bundle Adjustment 求解代码

单目 Bundle Adjustment 求解代码分析,相关资料请参考我的这篇博客。完整的工程在这里。

单目 Bundle Adjustment 求解代码

  • 相机数据
  • 定义顶点加法
  • 残差计算
  • Jacobians计算
    • check jacobians
  • Hessian计算
    • Hessian矩阵模型
      • Jacobian乘法模型
      • Hessian矩阵变化过程
      • Hessian矩阵最终形式
  • slam的舒尔补操作
    • Hessian矩阵的舒尔模型
    • 舒尔补计算公式
    • 舒尔补变换
    • 变量计算
  • toy example 1 marg变量测试代码

相机数据

相关的产生仿真数据的代码可以参考我的这篇博客。

/*
 * 产生世界坐标系下的虚拟数据: 相机姿态, 特征点, 以及每帧观测
 */
void GetSimDataInWordFrame(vector<Frame> &cameraPoses, vector<Eigen::Vector3d> &points) {
    int featureNums = 20;  // 特征数目,假设每帧都能观测到所有的特征
    int poseNums = 3;     // 相机数目

    double radius = 8;
    for (int n = 0; n < poseNums; ++n) {
        double theta = n * 2 * M_PI / (poseNums * 4); // 1/4 圆弧
        // 绕 z轴 旋转
        Eigen::Matrix3d R;
        R = Eigen::AngleAxisd(theta, Eigen::Vector3d::UnitZ());
        Eigen::Vector3d t = Eigen::Vector3d(radius * cos(theta) - radius, radius * sin(theta), 1 * sin(2 * theta));
        cameraPoses.push_back(Frame(R, t));
    }

    // 随机数生成三维特征点
    std::default_random_engine generator;
    std::normal_distribution<double> noise_pdf(0., 1. / 1000.);  // 2pixel / focal
    for (int j = 0; j < featureNums; ++j) {
        std::uniform_real_distribution<double> xy_rand(-4, 4.0);
        std::uniform_real_distribution<double> z_rand(4., 8.);

        Eigen::Vector3d Pw(xy_rand(generator), xy_rand(generator), z_rand(generator));
        points.push_back(Pw);

        // 在每一帧上的观测量
        for (int i = 0; i < poseNums; ++i) {
            Eigen::Vector3d Pc = cameraPoses[i].Rwc.transpose() * (Pw - cameraPoses[i].twc);
            Pc = Pc / Pc.z();  // 归一化图像平面
            Pc[0] += noise_pdf(generator);
            Pc[1] += noise_pdf(generator);
            cameraPoses[i].featurePerId.insert(make_pair(j, Pc));
        }
    }
}

定义顶点加法

定义pose的加法运算,将pose拆分成平移和旋转,平移直接进行加法,旋转采用李代数进行更新。

void VertexPose::Plus(const VecX &delta) {
    VecX &parameters = Parameters();
    parameters.head<3>() += delta.head<3>();   //pose的前三维平移向量
    Qd q(parameters[6], parameters[3], parameters[4], parameters[5]);   //pose的旋转部分,四元数表示的
    q = q * Sophus::SO3d::exp(Vec3(delta[3], delta[4], delta[5])).unit_quaternion();  // right multiplication with so3
    q.normalized();
    parameters[3] = q.x();
    parameters[4] = q.y();
    parameters[5] = q.z();
    parameters[6] = q.w();
//    Qd test = Sophus::SO3d::exp(Vec3(0.2, 0.1, 0.1)).unit_quaternion() * Sophus::SO3d::exp(-Vec3(0.2, 0.1, 0.1)).unit_quaternion();
//    std::cout << test.x()<<" "<< test.y()<<" "<
}

残差计算

计算边的残差。相关内容请参照我的这篇博客的VIO 中基于逆深度的重投影误差残差 Jacobian 的推导部分。

VIO学习笔记(五)—— 单目 Bundle Adjustment 求解代码_第1张图片

void EdgeReprojection::ComputeResidual() {
    //verticies_顶点顺序必须为InveseDepth、T_World_From_Body1、T_World_From_Body2。
    double inv_dep_i = verticies_[0]->Parameters()[0];   //逆深度信息

    VecX param_i = verticies_[1]->Parameters();
    Qd Qi(param_i[6], param_i[3], param_i[4], param_i[5]);   //旋转
    Vec3 Pi = param_i.head<3>();   //平移

    VecX param_j = verticies_[2]->Parameters();
    Qd Qj(param_j[6], param_j[3], param_j[4], param_j[5]);   //旋转
    Vec3 Pj = param_j.head<3>();   //平移

    //vio中基于逆深度的冲投影误差
    Vec3 pts_camera_i = pts_i_ / inv_dep_i;
    Vec3 pts_imu_i = qic * pts_camera_i + tic;   //相机坐标转换为imu坐标
    Vec3 pts_w = Qi * pts_imu_i + Pi;   //imu坐标系变换到世界坐标系
    Vec3 pts_imu_j = Qj.inverse() * (pts_w - Pj);   //世界坐标系变换到imu坐标系
    Vec3 pts_camera_j = qic.inverse() * (pts_imu_j - tic);   //imu坐标系变换的相机坐标系

    double dep_j = pts_camera_j.z();
    residual_ = (pts_camera_j / dep_j).head<2>() - pts_j_.head<2>();   /// J^t * J * delta_x = - J^t * r
//    residual_ = information_ * residual_;   // remove information here, we multi information matrix in problem solver
}

Jacobians计算

相关内容请参照我的这篇博客的残差 Jacobian 的推导部分。

  1. 残差对j时刻路标点的jacobian
                  VIO学习笔记(五)—— 单目 Bundle Adjustment 求解代码_第2张图片
  2. j时刻路标点对逆深度jacobian
    VIO学习笔记(五)—— 单目 Bundle Adjustment 求解代码_第3张图片
void EdgeReprojection::ComputeJacobians() {
    //verticies_顶点顺序必须为InveseDepth、T_World_From_Body1、T_World_From_Body2。
    double inv_dep_i = verticies_[0]->Parameters()[0];   //逆深度

    VecX param_i = verticies_[1]->Parameters();  //i时刻位姿
    Qd Qi(param_i[6], param_i[3], param_i[4], param_i[5]);
    Vec3 Pi = param_i.head<3>();

    VecX param_j = verticies_[2]->Parameters();  //j时刻位姿
    Qd Qj(param_j[6], param_j[3], param_j[4], param_j[5]);
    Vec3 Pj = param_j.head<3>();

    Vec3 pts_camera_i = pts_i_ / inv_dep_i;
    Vec3 pts_imu_i = qic * pts_camera_i + tic;
    Vec3 pts_w = Qi * pts_imu_i + Pi;
    Vec3 pts_imu_j = Qj.inverse() * (pts_w - Pj);
    Vec3 pts_camera_j = qic.inverse() * (pts_imu_j - tic);

    double dep_j = pts_camera_j.z();

    Mat33 Ri = Qi.toRotationMatrix();
    Mat33 Rj = Qj.toRotationMatrix();
    Mat33 ric = qic.toRotationMatrix();
    Mat23 reduce(2, 3);
    //残差对j时刻路标点的jacobian
    reduce << 1. / dep_j, 0, -pts_camera_j(0) / (dep_j * dep_j),
        0, 1. / dep_j, -pts_camera_j(1) / (dep_j * dep_j);
//    reduce = information_ * reduce;
	
    //j时刻路标点对i时刻pose的jacobian
    Eigen::Matrix<double, 2, 6> jacobian_pose_i;
    Eigen::Matrix<double, 3, 6> jaco_i;
    jaco_i.leftCols<3>() = ric.transpose() * Rj.transpose();
    jaco_i.rightCols<3>() = ric.transpose() * Rj.transpose() * Ri * -Sophus::SO3d::hat(pts_imu_i);
    jacobian_pose_i.leftCols<6>() = reduce * jaco_i;

    //j时刻路标点对j时刻pose的jacobian
    Eigen::Matrix<double, 2, 6> jacobian_pose_j;
    Eigen::Matrix<double, 3, 6> jaco_j;
    jaco_j.leftCols<3>() = ric.transpose() * -Rj.transpose();
    jaco_j.rightCols<3>() = ric.transpose() * Sophus::SO3d::hat(pts_imu_j);
    jacobian_pose_j.leftCols<6>() = reduce * jaco_j;

    //j时刻路标点对逆深度jacobian
    Eigen::Vector2d jacobian_feature;
    jacobian_feature = reduce * ric.transpose() * Rj.transpose() * Ri * ric * pts_i_ * -1.0 / (inv_dep_i * inv_dep_i);

    jacobians_[0] = jacobian_feature;
    jacobians_[1] = jacobian_pose_i;
    jacobians_[2] = jacobian_pose_j;

}

check jacobians

if(true)
{
std::cout << "//---------------- check jacobians -----------------//" << std::endl;
    std::cout << jacobians_[0] <<std::endl;
    const double eps = 1e-6;
    inv_dep_i += eps;
    Eigen::Vector3d pts_camera_i = pts_i_ / inv_dep_i;
    Eigen::Vector3d pts_imu_i = qic * pts_camera_i + tic;
    Eigen::Vector3d pts_w = Qi * pts_imu_i + Pi;
    Eigen::Vector3d pts_imu_j = Qj.inverse() * (pts_w - Pj);
    Eigen::Vector3d pts_camera_j = qic.inverse() * (pts_imu_j - tic);

    Eigen::Vector2d tmp_residual;
    double dep_j = pts_camera_j.z();
    tmp_residual = (pts_camera_j / dep_j).head<2>() - pts_j_.head<2>();
    tmp_residual = information_ * tmp_residual;
    std::cout <<"num jacobian: "<<  (tmp_residual - residual_) / eps <<std::endl;
}

比较计算结果与数值结果,一下为输出结果

//---------------- check jacobians -----------------//
-6.26683
-11.4615
num jacobian: -6.26683
-11.4615
//---------------- check jacobians -----------------//
-1.40693
-6.67589
num jacobian: -1.40693
 -6.6759
//---------------- check jacobians -----------------//
-6.21937
-9.82836
num jacobian: -6.21937
-9.82837
//---------------- check jacobians -----------------//
-1.98315
 -5.9814
num jacobian: -1.98316
-5.98141

Hessian计算

void Problem::MakeHessian() {
    TicToc t_h;
    // 直接构造大的 H 矩阵
    ulong size = ordering_generic_;   //38维,3×6+20
//     cout << "//-------------size--------------//" << endl;
//     cout << size << endl;
    MatXX H(MatXX::Zero(size, size));
    VecX b(VecX::Zero(size));

    int iiii = 1;
    
    for (auto &edge: edges_) {
	
	int iii = 1;
	
        edge.second->ComputeResidual();
        edge.second->ComputeJacobians();

        auto jacobians = edge.second->Jacobians();
        auto verticies = edge.second->Verticies();
        assert(jacobians.size() == verticies.size());
        for (size_t i = 0; i < verticies.size(); ++i) {
            auto v_i = verticies[i];
            if (v_i->IsFixed()) continue;    // Hessian 里不需要添加它的信息,也就是它的雅克比为 0

            auto jacobian_i = jacobians[i];
            ulong index_i = v_i->OrderingId();
            ulong dim_i = v_i->LocalDimension();
// 	    cout << "//-------------------index_i------------------//" << endl;
// 	    cout << index_i << endl;

            MatXX JtW = jacobian_i.transpose() * edge.second->Information();
// 	    cout << "//---------------JtW---------------------//" << endl;
// 	    cout << JtW << endl;
            for (size_t j = i; j < verticies.size(); ++j) {
                auto v_j = verticies[j];

                if (v_j->IsFixed()) continue;

                auto jacobian_j = jacobians[j];
                ulong index_j = v_j->OrderingId();
                ulong dim_j = v_j->LocalDimension();

                assert(v_j->OrderingId() != -1);
                MatXX hessian = JtW * jacobian_j;

                // 所有的信息矩阵叠加起来
                // TODO:: home work. 完成 H index 的填写.
                H.block(index_i, index_j, dim_i, dim_j).noalias() += hessian;
		cout << iiii<< ": " << iii << "//--------------H---------------//"  << endl;
		cout << H << endl;
                if (j != i) {
                    // 对称的下三角
		    // TODO:: home work. 完成 H index 的填写.
                    H.block(index_j, index_i, dim_j, dim_i).noalias() += hessian.transpose();
		    cout << iiii<< ": " << iii << "//--------------H---------------//"  << endl;
		    cout << H << endl;
                }
                iii++;
            }
            b.segment(index_i, dim_i).noalias() -= JtW * edge.second->Residual();
        }
// 	cout << "//--------------H---------------//"  << endl;
// 	cout << H << endl;
// 	cout << "//--------------b---------------//"  << endl;
// 	cout << b << endl;
	
	iiii++;
	
    }
    Hessian_ = H;
    b_ = b;
    t_hessian_cost_ += t_h.toc();
//     cout << "//--------------H---------------//"  << endl;
//     cout << H << endl;
//     cout << "//--------------b---------------//"  << endl;
//     cout << b << endl;

//    Eigen::JacobiSVD svd(H, Eigen::ComputeThinU | Eigen::ComputeThinV);
//    std::cout << svd.singularValues() <

    if (err_prior_.rows() > 0) {
        b_prior_ -= H_prior_ * delta_x_.head(ordering_poses_);   // update the error_prior
    }
    Hessian_.topLeftCorner(ordering_poses_, ordering_poses_) += H_prior_;
    b_.head(ordering_poses_) += b_prior_;

    delta_x_ = VecX::Zero(size);  // initial delta_x = 0_n;

}

Hessian矩阵模型

Jacobian乘法模型

VIO学习笔记(五)—— 单目 Bundle Adjustment 求解代码_第4张图片

Hessian矩阵变化过程

VIO学习笔记(五)—— 单目 Bundle Adjustment 求解代码_第5张图片

Hessian矩阵最终形式

VIO学习笔记(五)—— 单目 Bundle Adjustment 求解代码_第6张图片

slam的舒尔补操作

/*
 * Solve Hx = b, we can use PCG iterative method or use sparse Cholesky
 */
void Problem::SolveLinearSystem() {

    if (problemType_ == ProblemType::GENERIC_PROBLEM) {

        // 非 SLAM 问题直接求解
        // PCG solver
        MatXX H = Hessian_;
        for (ulong i = 0; i < Hessian_.cols(); ++i) {
            H(i, i) += currentLambda_;
        }
//        delta_x_ = PCGSolver(H, b_, H.rows() * 2);
        delta_x_ = Hessian_.inverse() * b_;

    } else {

        // SLAM 问题采用舒尔补的计算方式
        // step1: schur marginalization --> Hpp, bpp
        int reserve_size = ordering_poses_;
        int marg_size = ordering_landmarks_;

        // TODO:: home work. 完成矩阵块取值,Hmm,Hpm,Hmp,bpp,bmm
        MatXX Hmm = Hessian_.block(reserve_size, reserve_size, marg_size, marg_size);
        MatXX Hpm = Hessian_.block(0, reserve_size, reserve_size, marg_size);
        MatXX Hmp = Hessian_.block(reserve_size, 0, marg_size, reserve_size);
        VecX bpp = b_.segment(0, reserve_size);
        VecX bmm = b_.segment(reserve_size, marg_size);

        // Hmm 是对角线矩阵,它的求逆可以直接为对角线块分别求逆,如果是逆深度,对角线块为1维的,则直接为对角线的倒数,这里可以加速
        MatXX Hmm_inv(MatXX::Zero(marg_size, marg_size));
        for (auto landmarkVertex : idx_landmark_vertices_) {
            int idx = landmarkVertex.second->OrderingId() - reserve_size;
            int size = landmarkVertex.second->LocalDimension();
            Hmm_inv.block(idx, idx, size, size) = Hmm.block(idx, idx, size, size).inverse();
        }

        // TODO:: home work. 完成舒尔补 Hpp, bpp 代码
        MatXX tempH = Hpm * Hmm_inv;
        H_pp_schur_ = Hessian_.block(0, 0, ordering_poses_, ordering_poses_) - tempH * Hmp;
        b_pp_schur_ = bpp - tempH * bmm;

        // step2: solve Hpp * delta_x = bpp
        VecX delta_x_pp(VecX::Zero(reserve_size));
        // PCG Solver
        for (ulong i = 0; i < ordering_poses_; ++i) {
            H_pp_schur_(i, i) += currentLambda_;
        }

        int n = H_pp_schur_.rows() * 2;                       // 迭代次数
        // 哈哈,小规模问题,搞 pcg 花里胡哨
        delta_x_pp = PCGSolver(H_pp_schur_, b_pp_schur_, n);  
        delta_x_.head(reserve_size) = delta_x_pp;
        //        std::cout << delta_x_pp.transpose() << std::endl;

        // TODO:: home work. step3: solve landmark
        VecX delta_x_ll(marg_size);
        delta_x_ll = Hmm_inv * (bmm - Hmp * delta_x_pp);
        delta_x_.tail(marg_size) = delta_x_ll;

    }

}

Hessian矩阵的舒尔模型

VIO学习笔记(五)—— 单目 Bundle Adjustment 求解代码_第7张图片

舒尔补计算公式

VIO学习笔记(五)—— 单目 Bundle Adjustment 求解代码_第8张图片

舒尔补变换

VIO学习笔记(五)—— 单目 Bundle Adjustment 求解代码_第9张图片

变量计算

VIO学习笔记(五)—— 单目 Bundle Adjustment 求解代码_第10张图片

toy example 1 marg变量测试代码

关于toy example 1的相关内容请参照我的这篇博客的toy example 1回顾 toy example 1 中去除变量 x3 的操作部分。
相关的信息矩阵为:
      VIO学习笔记(五)—— 单目 Bundle Adjustment 求解代码_第11张图片
VIO学习笔记(五)—— 单目 Bundle Adjustment 求解代码_第12张图片

void Problem::TestMarginalize() {

    // Add marg test
    int idx = 1;            // marg 中间那个变量
    int dim = 1;            // marg 变量的维度
    int reserve_size = 3;   // 总共变量的维度
    double delta1 = 0.1 * 0.1;
    double delta2 = 0.2 * 0.2;
    double delta3 = 0.3 * 0.3;

    int cols = 3;
    MatXX H_marg(MatXX::Zero(cols, cols));
    H_marg << 1./delta1, -1./delta1, 0,
            -1./delta1, 1./delta1 + 1./delta2 + 1./delta3, -1./delta3,
            0.,  -1./delta3, 1/delta3;
    std::cout << "---------- TEST Marg: before marg------------"<< std::endl;
    std::cout << H_marg << std::endl;

    // TODO:: home work. 将变量移动到右下角
    /// 准备工作: move the marg pose to the Hmm bottown right
    // 将 row i 移动矩阵最下面
    Eigen::MatrixXd temp_rows = H_marg.block(idx, 0, dim, reserve_size);
    Eigen::MatrixXd temp_botRows = H_marg.block(idx + dim, 0, reserve_size - idx - dim, reserve_size);
    H_marg.block(idx, 0, dim, reserve_size) = temp_botRows;
    H_marg.block(idx + dim, 0, reserve_size - idx - dim, reserve_size) = temp_rows;

    // 将 col i 移动矩阵最右边
    Eigen::MatrixXd temp_cols = H_marg.block(0, idx, reserve_size, dim);
    Eigen::MatrixXd temp_rightCols = H_marg.block(0, idx + dim, reserve_size, reserve_size - idx - dim);
    H_marg.block(0, idx, reserve_size, reserve_size - idx - dim) = temp_rightCols;
    H_marg.block(0, reserve_size - dim, reserve_size, dim) = temp_cols;

    std::cout << "---------- TEST Marg: 将变量移动到右下角------------"<< std::endl;
    std::cout<< H_marg <<std::endl;

    /// 开始 marg : schur
    double eps = 1e-8;
    int m2 = dim;
    int n2 = reserve_size - dim;   // 剩余变量的维度
    Eigen::MatrixXd Amm = 0.5 * (H_marg.block(n2, n2, m2, m2) + H_marg.block(n2, n2, m2, m2).transpose());

    Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> saes(Amm);
    Eigen::MatrixXd Amm_inv = saes.eigenvectors() * Eigen::VectorXd(
            (saes.eigenvalues().array() > eps).select(saes.eigenvalues().array().inverse(), 0)).asDiagonal() *
                              saes.eigenvectors().transpose();

    // TODO:: home work. 完成舒尔补操作
    Eigen::MatrixXd Arm = H_marg.block(0,n2,n2,m2);
    Eigen::MatrixXd Amr = H_marg.block(n2,0,m2,n2);
    Eigen::MatrixXd Arr = H_marg.block(0,0,n2,n2);

    Eigen::MatrixXd tempB = Arm * Amm_inv;
    Eigen::MatrixXd H_prior = Arr - tempB * Amr;

    std::cout << "---------- TEST Marg: after marg------------"<< std::endl;
    std::cout << H_prior << std::endl;
}

结果如下:

---------- TEST Marg: before marg------------
     100     -100        0
    -100  136.111 -11.1111
       0 -11.1111  11.1111
---------- TEST Marg: 将变量移动到右下角------------
     100        0     -100
       0  11.1111 -11.1111
    -100 -11.1111  136.111
---------- TEST Marg: after marg------------
 26.5306 -8.16327
-8.16327  10.2041

你可能感兴趣的:(VIO,笔记)