范德蒙德卷积以及一些二项式系数的推导

1 : ∑ i = 0 k ( n i ) ( m k − i ) = ( n + m k ) \sum_{i=0}^k{\binom{n}{i}\binom{m}{k-i}}=\binom{n+m}{k} i=0k(in)(kim)=(kn+m)

从意义上理解即可,也就是从数量为 n n n m m m的两个堆中一共选择 k k k个物品

这两个堆在实际意义上也可以不存在。

2 : ∑ i = 1 n ( n i ) ( n i − 1 ) = ( 2 n n − 1 ) \sum_{i=1}^{n}{\binom{n}{i}\binom{n}{i-1}}=\binom{2n}{n-1} i=1n(in)(i1n)=(n12n)

证明 :

k = n − 1 k=n-1 k=n1则由1得 :

∑ i = 0 n − 1 ( n i ) ( n n − 1 − i ) = ∑ i = 0 n − 1 ( n i ) ( n i + 1 ) = ∑ i = 1 n ( n i ) ( n i − 1 ) \sum_{i=0}^{n-1}{\binom{n}{i}\binom{n}{n-1-i}}=\sum_{i=0}^{n-1}{\binom{n}{i}\binom{n}{i+1}}=\sum_{i=1}^{n}\binom{n}{i}\binom{n}{i-1} i=0n1(in)(n1in)=i=0n1(in)(i+1n)=i=1n(in)(i1n)

∑ i = 0 n − 1 ( n i ) ( n n − 1 − i ) = ( 2 n n − 1 ) ⇒ ∑ i = 1 n ( n i ) ( n i − 1 ) = ( 2 n n − 1 ) \sum_{i=0}^{n-1}{\binom{n}{i}\binom{n}{n-1-i}}=\binom{2n}{n-1}\Rightarrow\sum_{i=1}^{n}\binom{n}{i}\binom{n}{i-1}=\binom{2n}{n-1} i=0n1(in)(n1in)=(n12n)i=1n(in)(i1n)=(n12n)

证毕。

或者是

( 2 n n − 1 ) = ∑ i = 0 n ( n i ) ( n n − 1 − i ) = ∑ i = 0 n ( n i ) ( n i + 1 ) = ∑ i = 1 n ( n i ) ( n i − 1 ) \binom{2n}{n-1}=\sum_{i=0}^{n}{\binom{n}{i}\binom{n}{n-1-i}}=\sum_{i=0}^{n}{\binom{n}{i}\binom{n}{i+1}}=\sum_{i=1}^{n}\binom{n}{i}\binom{n}{i-1} (n12n)=i=0n(in)(n1in)=i=0n(in)(i+1n)=i=1n(in)(i1n)

其他的一些 :

∑ i = 0 n ( n i ) 2 = ∑ i = 0 n ( n i ) ( n n − i ) = ( 2 n n ) \sum_{i=0}^{n}{\binom{n}{i}^2}=\sum_{i=0}^{n}{\binom{n}{i}\binom{n}{n-i}}=\binom{2n}{n} i=0n(in)2=i=0n(in)(nin)=(n2n)

∑ i = 0 m ( n i ) ( m i ) = ∑ i = 0 m ( n i ) ( m m − i ) = ( n + m m ) \sum_{i=0}^m{\binom{n}{i}\binom{m}{i}}=\sum_{i=0}^m\binom{n}{i}\binom{m}{m-i}=\binom{n+m}{m} i=0m(in)(im)=i=0m(in)(mim)=(mn+m)

例题:

[ A H O I / H N O I 2017 ] 抛 硬 币 \href{https://loj.ac/problem/2023}{[AHOI/HNOI2017]抛硬币} [AHOI/HNOI2017]

其他的一些二项式系数推导的积累:

∑ k = 1 n k 2 ( n k ) = n ( n + 1 ) 2 n − 2 \sum_{k=1}^nk^2\binom{n}{k}=n(n+1)2^{n-2} k=1nk2(kn)=n(n+1)2n2
过程: k 2 k^2 k2转下降幂后暴力展开组合数即可
∑ k = 1 n k ( n k ) 2 = n ( 2 n − 1 n − 1 ) \sum_{k=1}^nk\binom{n}{k}^2=n\binom{2n-1}{n-1} k=1nk(kn)2=n(n12n1)
过程:
k ( n k ) = n ( n − 1 k − 1 ) = n ( n − 1 n − k ) k\binom{n}{k}=n\binom{n-1}{k-1}=n\binom{n-1}{n-k} k(kn)=n(k1n1)=n(nkn1)
范德蒙德卷积即可。

你可能感兴趣的:(结论证明,性质分析)