Coursera——Machine Learning (linear Regression) week2 编程作业答案

1、warmUpExercise.m:输出一个5*5的单位矩阵(identity matrix)

function A = warmUpExercise()
%WARMUPEXERCISE Example function in octave
%   A = WARMUPEXERCISE() is an example function that returns the 5x5 identity matrix

A = [];
% ============= YOUR CODE HERE ==============
% Instructions: Return the 5x5 identity matrix 
%               In octave, we return values by defining which variables
%               represent the return values (at the top of the file)
%               and then set them accordingly. 


A=eye(5);




% ===========================================


end

在Octave中输入命令为:
Coursera——Machine Learning (linear Regression) week2 编程作业答案_第1张图片
2、plotData.m:绘制一个散点图

function plotData(x, y)
%PLOTDATA Plots the data points x and y into a new figure 
%   PLOTDATA(x,y) plots the data points and gives the figure axes labels of
%   population and profit.

figure; %打开一个新的图像窗口

% ====================== YOUR CODE HERE ======================
% Instructions: Plot the training data into a figure using the 
%               "figure" and "plot" commands. Set the axes labels using
%               the "xlabel" and "ylabel" commands. Assume the 
%               population and revenue data have been passed in
%               as the x and y arguments of this function.
%
% Hint: You can use the 'rx' option with plot to have the markers
%       appear as red crosses. Furthermore, you can make the
%       markers larger by using plot(..., 'rx', 'MarkerSize', 10);
plot(x,y,'rx','MarkerSize',10);
ylabel('Profit in $10,000s');
xlabel('Population of City in 10,000s');



% ============================================================

end

在Octave中命令为:
Coursera——Machine Learning (linear Regression) week2 编程作业答案_第2张图片
3、computeCost.m:计算单个变量下的代价函数J(θ)
computeCostMulti.m:计算多个变量下的代价函数J(θ)
这两种情况下的代码是相同的。
这里写图片描述

function J = computeCost(X, y, theta)
%COMPUTECOST Compute cost for linear regression
%   J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
%   parameter for linear regression to fit the data points in X and y

% Initialize some useful values
m = length(y); % 训练集样本个数

% You need to return the following variables correctly 
J = 0;

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta
%               You should set J to the cost.
J=1/(2*m)*sum((X*theta-y).^2);




% =========================================================================

end

在Octave下命令为:X增加1列m行,值为1;初始化θ为2行1列,值为0
这里写图片描述
4、gradientDescent.m/gradientDescentMulti.m:梯度下降算法求θ最优解

function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
%GRADIENTDESCENT Performs gradient descent to learn theta
%   theta = GRADIENTDESCENT(X, y, theta, alpha, num_iters) updates theta by 
%   taking num_iters gradient steps with learning rate alpha

% Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);

for iter = 1:num_iters

    % ====================== YOUR CODE HERE ======================
    % Instructions: Perform a single gradient step on the parameter vector
    %               theta. 
    %
    % Hint: While debugging, it can be useful to print out the values
    %       of the cost function (computeCost) and gradient here.
    %
    theta=theta-alpha*(1/m)*(X'*(X*theta-y));





    % ============================================================

    % Save the cost J in every iteration    
    J_history(iter) = computeCost(X, y, theta);

end

end

在octave下命令为:
Coursera——Machine Learning (linear Regression) week2 编程作业答案_第3张图片
5、featureNormalize.m:将特征进行缩放后的值

function [X_norm, mu, sigma] = featureNormalize(X)
%FEATURENORMALIZE Normalizes the features in X 
%   FEATURENORMALIZE(X) returns a normalized version of X where
%   the mean value of each feature is 0 and the standard deviation
%   is 1. This is often a good preprocessing step to do when
%   working with learning algorithms.

% You need to set these values correctly
X_norm = X;
mu = zeros(1, size(X, 2));
sigma = zeros(1, size(X, 2));

% ====================== YOUR CODE HERE ======================
% Instructions: First, for each feature dimension, compute the mean
%               of the feature and subtract it from the dataset,
%               storing the mean value in mu. Next, compute the 
%               standard deviation of each feature and divide
%               each feature by it's standard deviation, storing
%               the standard deviation in sigma. 
%
%               Note that X is a matrix where each column is a 
%               feature and each row is an example. You need 
%               to perform the normalization separately for 
%               each feature. 
%
% Hint: You might find the 'mean' and 'std' functions useful.
%       
for i=1:size(X,2)  
    mu(i)=mean(X(:,i));  %第i列所有元素的平均值
    sigma(i)=std(X(:,i));
end
X_norm=(X_norm - mu) ./ sigma;





% ============================================================

end

在Octave下的命令为:
Coursera——Machine Learning (linear Regression) week2 编程作业答案_第4张图片
6、normalEqn.m:正规方程可以直接求θ的最优解
这里写图片描述

function [theta] = normalEqn(X, y)
%NORMALEQN Computes the closed-form solution to linear regression 
%   NORMALEQN(X,y) computes the closed-form solution to linear 
%   regression using the normal equations.

theta = zeros(size(X, 2), 1);

% ====================== YOUR CODE HERE ======================
% Instructions: Complete the code to compute the closed form solution
%               to linear regression and put the result in theta.
%

% ---------------------- Sample Solution ----------------------
theta=pinv(X'*X)*X'*y;



% -------------------------------------------------------------


% ============================================================

end

在Octave下命令为:
这里写图片描述
最后提交,
Coursera——Machine Learning (linear Regression) week2 编程作业答案_第5张图片

你可能感兴趣的:(ml)