- 量子机器学习入门:从理论到实践
量子机器学习入门:从理论基石到实践路径元数据框架标题量子机器学习入门:从理论基石到实践路径——连接量子计算与人工智能的未来桥梁关键词量子计算;机器学习;量子算法;量子神经网络;Qiskit;PennyLane;量子变分算法摘要量子机器学习(QuantumMachineLearning,QML)是量子计算与机器学习的交叉领域,通过量子计算的叠加态、纠缠和并行性解决传统机器学习的计算瓶颈(如高维数据处
- 量子计算突破:8比特扩散模型实现指数级加速
晨曦543210
人工智能
目录一、量子扩散模型(QuantumDiffusion)二、DNA存储生成(Biological-GAN)三、光子计算加速四、神经形态生成五、引力场渲染六、分子级生成七、星际生成网络八、元生成系统极限挑战方向一、量子扩散模型(QuantumDiffusion)量子线路模拟经典扩散过程fromqiskitimportQuantumCircuitfromqiskit_machine_learning.
- 10、 量子神经网络:从理论到实践
安检
量子神经网络PennyLaneQiskit
量子神经网络:从理论到实践1.量子神经网络简介量子神经网络(QuantumNeuralNetworks,QNNs)是量子计算与经典机器学习相
- 一天一道Sql题(day03)
huihui450
sql数据库
将两个SELECT语句结合起来(一)_牛客题霸_牛客网思路:本题主要考查unionall连接两个sql语句,没什么难度union(all):要求列的顺序、数据类型和列数保持一致。区别就是不加all会对连接的结果去重。unionall不会去重sql:select*fromOrderItemswherequantity=100unionallselect*fromOrderItemswhereprod
- 量化开发(系列第3篇): C++在高性能量化交易中的核心应用与技术栈深度解析
Natsume1710
c++开发语言性能优化python
本文为《量化开发》系列第3篇参考GitHub项目:Awesome-QuantDev-Learn前言在量化交易领域,Python以其开发效率高、生态系统丰富等优势,成为策略研究、数据分析及中低频交易的首选语言。在本系列前两篇文章中,我们详细探讨了Python在量化入门与策略回测中的实践。然而,当进入对延迟要求极为严苛的高频交易(High-FrequencyTrading,HFT)领域时,Python
- Python量化策略与回测框架实战:从“纸上谈兵”到“真金白银”的第一步(系列第2篇)
Natsume1710
python开发语言github
作者:GitHub项目地址Awesome-QuantDev-Learn本文为量化开发学习路线系列第2篇,欢迎收藏与关注。引言:为什么选择Python作为量化入门的起点?在上一篇文章中,我们详细讲解了量化开发的基本框架与开发者思维的转变路径。那么,具体要如何开始第一步实践呢?答案是:从Python入门。Python以其快速原型开发能力、丰富的数据分析工具包,以及良好的社区生态,已经成为全球范围内量化
- YOLOv5Lite模型量化与TFLite转换全流程指南
神经网络15044
仿真模型深度学习神经网络YOLO神经网络人工智能深度学习网络机器学习
YOLOv5Lite模型量化与TFLite转换全流程指南1.引言在边缘计算和移动设备上部署目标检测模型时,模型大小和推理速度是关键考量因素。YOLOv5Lite作为YOLO系列的轻量级变种,专为资源受限环境设计。然而,要进一步优化模型性能,量化(Quantization)和转换为TFLite格式是必不可少的步骤。本文将详细介绍从训练好的YOLOv5Lite模型到量化TFLite模型的完整转换流程,
- PNG图像压缩优化工具
丁金金_chihiro_修行
libpngPNG图像压缩优化工具
PNG图像压缩优化工具标题:PNG图像三重压缩优化系统介绍大纲1.工具概述基于libimagequant和libpng的高效PNG压缩工具提供三种不同级别的压缩算法支持保留透明度和色彩质量优化2.核心功能基础压缩(compress_png):标准量化处理中等压缩率和处理速度适合大多数常规用途优化压缩(compress_png_optimized):增强的量化参数设置更低的抖动级别更高的压缩级别(9
- 《量化开发》系列 第 1 篇:金融知识基础入门指南(附 GitHub 学习项目)
Natsume1710
金融github学习
本文为《量化开发学习路线与知识点》专栏的第一篇参考项目:Awesome-QuantDev-Learn量化金融是金融经济学与计算机科学交叉融合形成的新兴行业,越来越多的技术人才正积极投身其中。然而,面对纷繁复杂的金融概念与专业的开发技能,许多人常常感到无从下手。本专栏将为C++/Python工程师、自学者、量化岗求职者提供系统清晰的学习路径。本篇文章聚焦于量化开发所需的金融基础知识,帮助技术人打下坚
- 分布式学习
嘉陵妹妹
分布式学习
1.列举三个非冯·诺依曼计算结构非冯结构是指不遵循传统冯·诺依曼体系的计算架构,包括:数据流结构(DataflowArchitecture):指令执行取决于数据的可用性而不是程序计数器。神经网络结构(NeuralNetworkArchitecture):模拟生物神经元连接,用于人工智能。量子计算结构(QuantumComputingArchitecture):利用量子比特和量子叠加原理进行计算。2
- equine在神经网络中建立量化不确定性
struggle2025
神经网络人工智能深度学习
一、软件介绍文末提供程序和源码下载众所周知,用于监督标记问题的深度神经网络(DNN)可以在各种学习任务中产生准确的结果。但是,当准确性是唯一目标时,DNN经常会做出过于自信的预测,并且无论测试数据是否属于任何已知标签,它们也总是进行标签预测。EQUINEwascreatedtosimplifytwokindsofuncertaintyquantificationforsupervisedlabel
- 强化学习 16G实践以下是基于CQL(Conservative Q-Learning)与QLoRA(Quantized Low-Rank Adaptation)结合的方案相关开源项目及资源,【ai技】
行云流水AI笔记
开源人工智能
根据你提供的CUDA版本(11.5)和NVIDIA驱动错误信息,以下是PyTorch、TensorFlow的兼容版本建议及环境修复方案:1.版本兼容性表框架兼容CUDA版本推荐安装命令(CUDA11.5)PyTorch11.3/11.6pipinstalltorchtorchvisiontorchaudio--extra-index-urlhttps://download.pytorch.org/
- vue+Element 动态表单 动态增减表单项
疯人院里的疯言风语
vue.jselementuijavascript
动态增减表单项也是比较常用的,除了在Form组件上一次性传递所有的验证规则外还可以在单个的表单域上传递属性的验证规则,在一些需求下面很灵活方便。下面来看看怎么样实现动态增加,验证,删除表单项。直接上代码点击打开动态表单1"class="box_threeel-icon-delete"@click="removeDomain(item)">现在有({{quantity||"1"}})个最多45个新增
- 量子机器学习前沿:量子神经网络与混合量子-经典算法
软考和人工智能学堂
人工智能#深度学习Python开发经验量子计算
1.量子计算基础1.1量子比特与量子门importnumpyasnpfromqiskitimportQuantumCircuit,Aer,executefromqiskit.visualizationimportplot_histogram#单量子比特操作演示defsingle_qubit_demo():qc=QuantumCircuit(1)qc.h(0)#Hadamard门创建叠加态qc.rz
- VUE3入门很简单(2)--- 计算属性
有诺千金
Vue3vue.js前端javascript
前言重要提示:文章只适合初学者,不适合专家!!!为什么需要计算属性?想象你在开发一个购物车功能。当用户选择商品时,你需要:计算商品总价根据折扣码调整价格自动更新免运费状态显示税费金额你会怎么做?在模板中写表达式?总价:¥{{(items.reduce((sum,item)=>sum+item.price*item.quantity,0)*(1-discountRate))}}sum+item.pr
- 【云原生】Docker 部署 Elasticsearch 9 操作详解
逆风飞翔的小叔
运维Docker部署es9Docker部署esDocker搭建es9Elasticsearch9Docker搭建es
目录一、前言二、Elasticsearch9新特性介绍2.1基于Lucene10重大升级2.2BetterBinaryQuantization(BBQ)2.3ElasticDistributionsofOpenTelemetry(EDOT)2.4LLM可观测性2.5攻击发现与自动导入2.6ES|QL增强2.7语义检索三、基于Docker部署Elasticsearch93.1Elasticsearc
- 正则表达式中?的用法
张太行_
正则表达式linux
在正则表达式中,?是一个量词(Quantifier),表示前面的元素匹配0次或1次(即“可选”)。以下是具体用法和示例:1.基本用法:匹配可选字符语法:X?表示X可以出现0次或1次。示例:正则colou?r:匹配"color"(u出现0次)匹配"colour"(u出现1次)。2.与其他符号结合分组可选:(abc)?匹配整个"abc"0次或1次(如""或"abc")。字符类可选:[ae]?匹配"a"
- 关于 Kyber:抗量子密码算法 Kyber 详解
shenyan~
量子计算
一、基本概念后量子密码学(PQC)│├──>是一个领域(研究如何在“量子时代”保护数据安全)│└──>Kyber是这个领域中设计出来的一个“抗量子密码算法”└──>Kyber是用于加密密钥交换的算法(叫KEM)>后量子密码学(Post-QuantumCryptography,PQC)这是一个“研究领域/学科”,目标是:设计在“未来量子计算机”也无法破解的密码算法。因为像RSA、ECC(椭圆曲线加密
- 什么是 QLoRA(Quantized Low-Rank Adaptation,量化低秩适配)
彬彬侠
大模型QLoRA量化低秩适配PEFT参数高效微调transformersbitsandbytespython
QLoRA(QuantizedLow-RankAdaptation,量化低秩适配)是LoRA(Low-RankAdaptation)的一种优化扩展,旨在进一步降低大语言模型微调的计算和内存需求。QLoRA结合了4-bit量化(quantization)和LoRA的低秩更新技术,使超大规模模型(如70B参数的LLaMA)能够在单GPU上进行高效微调,同时保持与全参数微调相近的性能。QLoRA由Det
- 探索算法秘境:量子随机游走算法及其在图论问题中的创新应用
目录编辑一、量子随机游走算法的起源与原理二、量子随机游走算法在图论问题中的创新应用三、量子随机游走算法的优势与挑战四、结语在算法研究的浩瀚星空中,总有一些领域如同遥远星系,闪烁着神秘而诱人的光芒。今天,我们将一同深入这片算法秘境,探索一个相对偏僻但极具潜力的算法——量子随机游走算法(QuantumRandomWalk,QRW),并揭示它在图论问题中的创新应用。一、量子随机游走算法的起源与原理量子随
- 【2025CVPR】基于CNN-Transformer的高效量化EfficientQuant模型
清风AI
计算机视觉算法深度学习算法详解及代码复现cnntransformer人工智能深度学习计算机视觉python神经网络
目录一、研究背景与挑战二、核心方法:EfficientQuant架构1.结构感知块识别算法2.卷积块的均匀量化3.Transformer块的Log2量化三、创新点与优势1.结构感知量化策略2.高效硬件适配3.边缘部署友好四、实验验证1.数据集与指标2.对比实验(1)与其他PTQ方法的对比(2)边缘设备实测五、代码实现要点1.Log2量化核心代码2.模型部署流程六、可视化分析1.权重分布对比2.边缘
- 每日leetcode
XiaoyaoCarter
leetcode训练leetcode算法职场和发展pythonpandas
2887.填充缺失值-力扣(LeetCode)题目DataFrameproducts+-------------+--------+|ColumnName|Type|+-------------+--------+|name|object||quantity|int||price|int|+-------------+--------+编写一个解决方案,在quantity列中将缺失的值填充为0。返
- 【AI大模型学习路线】第二阶段之RAG基础与架构——第九章(向量数据库常见算法)Product Quantization?
985小水博一枚呀
人工智能学习数据库算法语言模型
【AI大模型学习路线】第二阶段之RAG基础与架构——第九章(向量数据库常见算法)ProductQuantization?【AI大模型学习路线】第二阶段之RAG基础与架构——第九章(向量数据库常见算法)ProductQuantization?文章目录【AI大模型学习路线】第二阶段之RAG基础与架构——第九章(向量数据库常见算法)ProductQuantization?前言1.算法原理1.1向量分块与
- 量子混合算法的深度优化:在开源框架中的策略与实战
梦玄海
算法微信java面试开发语言golang
一、混合算法的核心:变分范式与优化流程混合算法的精髓在于变分量子电路(VariationalQuantumCircuit,VQC)或称参数化量子电路(ParameterizedQuantumCircuit,PQC):量子处理单元(QPUs):执行参数化的量子电路(例如U(θ)),制备量子态|ψ(θ)>。经典处理单元(CPUs):测量量子态,计算目标函数C(θ)(例如期望值〈ψ(θ)|H|ψ(θ)>
- The Quantization Model of Neural Scaling
绒绒毛毛雨
语言模型人工智能
文章目录摘要1引言2理论3概念验证:一个玩具数据集3.1“多任务稀疏奇偶校验”数据集3.2幂律规模和新兴能力4拆解大型语言模型的规模定律4.1单token损失的分布4.2单基因(monogenic)与多基因(polygenic)的规模曲线5.1语言模型量子的自然分布6相关工作7讨论摘要我们提出了神经网络规模定律的量化模型,该模型既解释了随着模型和数据规模增加损失按幂律下降的现象,也解释了随着规模扩
- Python量化投资入门教程:从零构建你的第一个交易策略
聪明的一休哥哥
程序员理财python开发语言量化交易
1、什么是量化投资?量化投资(QuantitativeInvestment),即通过数量化方式及计算机程序化发出买卖指令,以获取超额收益或特定风险收益比为目的的交易方式。它借助现代统计学、数学方法,利用计算机技术从海量历史数据中寻找能带来超额收益的“大概率”策略和规律,并纪律严明地按照这些策略构建的数量化模型来执行投资理念。其核心优势在于:纪律性:避免投资者在市场波动中因情绪波动做出错误决策。效率
- 【PhysUnits】17.7 readme.md更新
liuyuan77
我的计量单位库quantityrust
physunits·物理单位库Type-safephysicalquantitieswithdimensionalanalysis带量纲分析的类型安全物理量库ARustlibraryforsafeunitoperations/Rust实现的类型安全单位计算库KeyAdvantages/核心优势Nodependencies-PureRustimplementationwithoutexternald
- 【向量库】Weaviate 搜索与索引技术:从基础概念到性能优化
roman_日积跬步-终至千里
weaviate向量库
文章目录零、概述一、搜索技术分类1.向量搜索:捕捉语义的智能检索2.关键字搜索:精确匹配的传统方案3.混合搜索:语义与精确的双重保障二、向量检索技术分类1.HNSW索引:大规模数据的高效引擎2.Flat索引:小规模数据的轻量级方案3.Dynamic索引:动态数据的智能适配三、量化技术(与索引协同,提高搜索速度)1.ProductQuantization(PQ)2.BinaryQuantizatio
- ISO14067盘查哪些内容?
Simon_lca
低碳认证可持续经验分享零知识证明分类笔记科技
ISO14067是国际标准化组织(ISO)发布的关于产品碳足迹(ProductCarbonFootprint,PCF)的标准,全称为《ISO14067:2018温室气体—产品的碳足迹—量化和沟通的要求与指南》(Greenhousegases—Carbonfootprintofproducts—Requirementsandguidelinesforquantificationandcommunic
- leetcodeSQL解题:3564. 季节性销售分析
流落的小鬼
数据库算法
leetcodeSQL解题:3564.季节性销售分析题目:表:sales±--------------±--------+|ColumnName|Type|±--------------±--------+|sale_id|int||product_id|int||sale_date|date||quantity|int||price|decimal|±--------------±-------
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_