Thrift是一个跨语言的服务部署框架,最初由Facebook于2007年开发,2008年进入Apache开源项目。Thrift通过IDL(Interface Definition Language,接口定义语言)来定义RPC(Remote Procedure Call,远程过程调用)的接口和数据类型,然后通过thrift编译器生成不同语言的代码(目前支持C++,Java, Python, PHP, Ruby, Erlang, Perl, Haskell, C#, Cocoa, Smalltalk和OCaml),并由生成的代码负责RPC协议层和传输层的实现。
图中,TProtocol(协议层),定义数据传输格式,例如:
TTransport(传输层),定义数据传输方式,可以为TCP/IP传输,内存共享或者文件共享等)被用作运行时库。
Thrift支持的服务模型
Thrift实际上是实现了C/S模式,通过代码生成工具将thrift文生成服务器端和客户端代码(可以为不同语言),从而实现服务端和客户端跨语言的支持。用户在Thirft文件中声明自己的服务,这些服务经过编译后会生成相应语言的代码文件,然后客户端调用服务,服务器端提服务便可以了。
一般将服务放到一个.thrift文件中,服务的编写语法与C语言语法基本一致,在.thrift文件中有主要有以下几个内容:变量声明(variable)、数据声明(struct)和服务接口声明(service, 可以继承其他接口)。
下面分析Thrift的tutorial中带的例子tutorial.thrift:
// 包含头文件
include “shared.thrift”
// 指定目标语言
namespace cpp tutorial
// 定义变量
const i32 INT32CONSTANT = 9853
// 定义结构体
struct Work {
1: i32 num1 = 0,
2: i32 num2,
3: Operation op,
4: optional string comment,
}
// 定义服务
service Calculator extends shared.SharedService {
/**
* A method definition looks like C code. It has a return type, arguments,
* and optionally a list of exceptions that it may throw. Note that argument
* lists and exception lists are specified using the exact same syntax as
* field lists in struct or exception definitions.
*/
void ping(),
i32 add(1:i32 num1, 2:i32 num2),
i32 calculate(1:i32 logid, 2:Work w) throws (1:InvalidOperation ouch),
/**
* This method has a oneway modifier. That means the client only makes
* a request and does not listen for any response at all. Oneway methods
* must be void.
*/
oneway void zip()
}
编译thrift文件,生成C++代码:
./thrift --gen cpp tutorial.thrift #结果代码存放在gen-cpp目录下
如果是要生成java代码:
./thrift --gen java tutorial.thrift #结果代码存放在gen-java目录下
client端和sever端代码要调用编译.thrift生成的中间文件。
下面分析cpp文件下面的CppClient.cpp和CppServer.cpp代码
在client端,用户自定义CalculatorClient类型的对象(用户在.thrift文件中声明的服务名称是Calculator, 则生成的中间代码中的主类为CalculatorClient), 该对象中封装了各种服务,可以直接调用(如client.ping()), 然后thrift会通过封装的rpc调用server端同名的函数。
在server端,需要实现在.thrift文件中声明的服务中的所有功能,以便处理client发过来的请求。
Thrift文件支持shell命令,因此thrift是可执行的。
Thrfit支持shell注释风格(#),也支持C/C++语言中单行(//)或者多行(/* */)注释风格
1、基本类型
2、容器
3、结构体 struct
Thrift结构体在概念上同C语言结构体类型—-一种将相关属性聚集(封装)在一起的方式;
在面向对象语言中,thrift结构体被转换成类。
struct Work {
1: i32 num1 = 0,
2: i32 num2,
3: Operation op,
4: optional string comment,
}
结构体中,每个字段包含一个整数ID,数据类型、字段名,和一个可选的默认值。
字段还可以声明为"optional",当该字段没有设置的时候,不会被序列化输出;
规范的struct定义中的每个域均会使用required或者optional关键字进行标识。如果required标识的域没有赋值,thrift将给予提示。如果optional标识的域没有赋值,该域将不会被序列化传输。如果某个optional标识域有缺省值而用户没有重新赋值,则该域的值一直为缺省值。
4、异常 exception
异常在语法和功能上类似于结构体,只不过异常使用关键字exception而不是struct关键字声明。但它在语义上不同于结构体,当定义一个RPC服务时,开发者可能需要声明一个远程方法抛出一个异常。
exception InvalidOperation {
1: i32 what,
2: string why
}
5、服务 service
在流行的序列化/反序列化框架(如protocol buffer)中,Thrift是少有的提供多语言间RPC服务的框架。
Thrift编译器会根据选择的目标语言为server产生服务接口代码,为client产生桩代码
//“Twitter”与“{”之间需要有空格!!!
service Twitter {
// 方法定义方式类似于C语言中的方式,它有一个返回值,一系列参数和可选的异常
// 列表. 注意,参数列表和异常列表定义方式与结构体中域定义方式一致.
void ping(), // 函数定义可以使用逗号或者分号标识结束
bool postTweet(1:Tweet tweet); // 参数可以是基本类型或者结构体,参数是只读的(const),不可以作为返回值!!!
TweetSearchResult searchTweets(1:string query); // 返回值可以是基本类型或者结构体
// ”oneway”标识符表示client发出请求后不必等待回复(非阻塞)直接进行下面的操作,
// ”oneway”方法的返回值必须是void
oneway void zip() // 返回值可以是void
}
service中的函数,其参数列表的定义方式与struct完全一样;
service支持继承,一个service可使用extends关键字继承另一个service,struct不支持继承;
6、枚举类型 enum
enum TweetType {
TWEET, // 编译器默认从1开始赋值
RETWEET = 2, // 可以赋予某个常量某个整数
DM = 0xa, //允许常量是十六进制整数
REPLY // 末尾没有逗号
}
struct Tweet {
1: required i32 userId;
2: required string userName;
3: required string text;
4: optional Location loc;
5: optional TweetType tweetType = TweetType.TWEET // 给常量赋缺省值时,使用常量的全称
16: optional string language = "english"
}
7、常量 const
Thrift允许用户定义常量,复杂的类型和结构体可使用JSON形式表示。
const i32 INT_CONST = 1234; // 分号是可选的
const map MAP_CONST = {"hello": "world", "goodnight": "moon"}
PS:跟C语言类似,Thrift也支持typedef语句,例如:
typedef i32 MyInteger
命名空间
Thrift中的命名空间同C++中的namespace类似,它们均提供了一种组织(隔离)代码的方式。因为每种语言均有自己的命名空间定义方式(如python中有module),thrift允许开发者针对特定语言定义namespace:
namespace cpp com.example.project
namespace java com.example.project
产生代码
下面介绍Thrift产生各种目标语言代码的方式,
Thrift的网络栈如下所示:
Transport层提供了一个简单的网络读写抽象层。这使得thrift底层的transport从系统其它部分(如:序列化/反序列化)解耦。
以下是一些Transport接口提供的方法:
open
close
read
write
listen
accept
flush
Protocol抽象层定义了一种将内存中数据结构映射成可传输格式的机制。换句话说,Protocol定义了datatype怎样使用底层的Transport对自己进行编解码。因此,Protocol的实现要给出编码机制并负责对数据进行序列化。
Protocol接口的定义如下:
writeMessageBegin(name, type, seq)
writeMessageEnd()
writeStructBegin(name)
writeStructEnd()
writeFieldBegin(name, type, id)
writeFieldEnd()
writeFieldStop()
writeMapBegin(ktype, vtype, size)
writeMapEnd()
writeListBegin(etype, size)
writeListEnd()
writeSetBegin(etype, size)
writeSetEnd()
writeBool(bool)
writeByte(byte)
writeI16(i16)
writeI32(i32)
writeI64(i64)
writeDouble(double)
writeString(string)
name, type, seq = readMessageBegin()
readMessageEnd()
name = readStructBegin()
readStructEnd()
name, type, id = readFieldBegin()
readFieldEnd()
k, v, size = readMapBegin()
readMapEnd()
etype, size = readListBegin()
readListEnd()
etype, size = readSetBegin()
readSetEnd()
bool = readBool()
byte = readByte()
i16 = readI16()
i32 = readI32()
i64 = readI64()
double = readDouble()
string = readString()
Processor封装了从输入数据流中读数据和向数据数据流中写数据的操作。读写数据流用Protocol对象表示。Processor的结构体非常简单:
interface TProcessor {
bool process(TProtocol in, TProtocol out) throws TException
}
与服务相关的processor实现由编译器产生。Processor主要工作流程如下:从连接中读取数据(使用输入protocol),将处理授权给handler(由用户实现),最后将结果写到连接上(使用输出protocol)。
Server将以上所有特性集成在一起:
(1) 创建一个transport对象
(2) 为transport对象创建输入输出protocol
(3) 基于输入输出protocol创建processor
(4) 等待连接请求并将之交给processor处理