https://blog.csdn.net/Maisie_Nan/article/details/101026814
使用pip安装labelme;
使用cmd启动labelme标注界面;
labelme
labels.txt存放分类数据。
自己修改下labelme2voc.py
python labelme2voc.py --labels=labels.txt input_folder data_dataset_voc
# -*- coding: utf-8 -*-
#!/usr/bin/env python
"""
Created on Thu Sep 19 15:46:16 2019
@author: Andrea
"""
from __future__ import print_function
import argparse
import glob
import json
import os
import os.path as osp
import sys
import numpy as np
import PIL.Image
import labelme
from sklearn.model_selection import train_test_split
def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument('input_dir', help='input annotated directory')
parser.add_argument('output_dir', help='output dataset directory')
parser.add_argument('--labels', help='labels file', required=True)
args = parser.parse_args()
if osp.exists(args.output_dir):
print('Output directory already exists:', args.output_dir)
# sys.exit(1)
else:
os.makedirs(args.output_dir)
os.makedirs(osp.join(args.output_dir, 'JPEGImages'))
os.makedirs(osp.join(args.output_dir, 'SegmentationClass'))
# os.makedirs(osp.join(args.output_dir, 'SegmentationClassPNG'))
os.makedirs(osp.join(args.output_dir, 'SegmentationClassVisualization'))
saved_path = args.output_dir
if not os.path.exists(os.path.join(saved_path , 'ImageSets','Segmentation')):
os.makedirs(os.path.join(saved_path , 'ImageSets','Segmentation'))
print('Creating dataset:', args.output_dir)
class_names = []
class_name_to_id = {}
for i, line in enumerate(open(args.labels).readlines()):
print(i)
class_id = i+1 # starts with -1
class_name = line.strip()
class_name_to_id[class_name] = class_id
if class_id == -1:
assert class_name == '__ignore__'
continue
elif class_id == 0:
assert class_name == '_background_'
class_names.append(class_name)
class_names = tuple(class_names)
print('class_names:', class_names)
out_class_names_file = osp.join(args.output_dir, 'class_names.txt')
with open(out_class_names_file, 'w') as f:
f.writelines('\n'.join(class_names))
print('Saved class_names:', out_class_names_file)
colormap = labelme.utils.label_colormap(255)
for label_file in glob.glob(osp.join(args.input_dir, '*.json')):
print('Generating dataset from:', label_file)
try:
with open(label_file) as f:
base = osp.splitext(osp.basename(label_file))[0]
out_img_file = osp.join(
args.output_dir, 'JPEGImages', base + '.jpg')
# out_lbl_file = osp.join(
# args.output_dir, 'SegmentationClass', base + '.npy')
# args.output_dir, 'SegmentationClass', base + '.npy')
out_png_file = osp.join(
args.output_dir, 'SegmentationClass', base + '.png')
out_viz_file = osp.join(
args.output_dir,
'SegmentationClassVisualization',
base + '.jpg',
)
data = json.load(f)
img_file = osp.join(label_file.split('.json')[0]+'.jpg')
img = np.asarray(PIL.Image.open(img_file))
PIL.Image.fromarray(img).save(out_img_file)
print('class_name_to_id:',class_name_to_id)
lbl = labelme.utils.shapes_to_label(
img_shape=img.shape,
shapes=data['shapes'],
label_name_to_value=class_name_to_id,
)
labelme.utils.lblsave(out_png_file, lbl)
# np.save(out_lbl_file, lbl)
viz = labelme.utils.draw_label(
lbl, img, class_names, colormap=colormap)
PIL.Image.fromarray(viz).save(out_viz_file)
except:
with open('wrongdata.txt','w') as f:
f.write(label_file+'\n')
print('这张图像有错误')
continue
#6.split files for txt
txtsavepath = os.path.join(saved_path , 'ImageSets','Segmentation')
ftrainval = open(os.path.join(txtsavepath,'trainval.txt'), 'w')
ftest = open(os.path.join(txtsavepath,'test.txt'), 'w')
ftrain = open(os.path.join(txtsavepath,'train.txt'), 'w')
fval = open(os.path.join(txtsavepath,'val.txt'), 'w')
total_files = os.listdir(osp.join(args.output_dir, 'SegmentationClass'))
total_files = [i.split("/")[-1].split(".png")[0] for i in total_files]
#test_filepath = ""
for file in total_files:
ftrainval.write(file + "\n")
#test
#for file in os.listdir(test_filepath):
# ftest.write(file.split(".jpg")[0] + "\n")
#split
train_files,val_files = train_test_split(total_files,test_size=0.15,random_state=42)
#train
for file in train_files:
ftrain.write(file + "\n")
#val
for file in val_files:
fval.write(file + "\n")
ftrainval.close()
ftrain.close()
fval.close()
ftest.close()
if __name__ == '__main__':
main()
运行完毕生成VOC数据集。
如果需要制作【目标检测】数据集:labelme 标注矩形检测数据格式转 VOC 数据集格式。
可参考:http://spytensor.com/index.php/archives/35/?hutoto=th9jn1&labule=dmrxn1
————————————————
版权声明:本文为CSDN博主「Mein_Augenstern」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/Maisie_Nan/article/details/101026814