Condition实现原理

Condition可以阻塞或唤醒线程,配合lock使用达到类似于wait()和notify()的效果。本文主要根据jdk源码讲解condition的实现原理。
Condition是一个接口,首先看看接口中定义的方法列表

public interface Condition {
 void await() throws InterruptedException;//类似于wait(),可以响应中断
 void awaitUninterruptibly();//不响应中断的等待
 long awaitNanos(long nanosTimeout) throws InterruptedException;//等待指定时间(单位是纳秒),在接到信号、被中断或到达指定等待时间之前一直处于等待状态。方法返回被唤醒后的剩余等待时间,若返回值小于等于0则代表此次等待超时。
boolean await(long time, TimeUnit unit) throws InterruptedException;//指定时间到达前结束等待返回true,否则返回false
boolean awaitUntil(Date deadline) throws InterruptedException;//指定日期到达前被唤醒返回true,否则返回false
void signal();//唤醒一个等待中的线程,类似于notify()
void signalAll();//唤醒所有等待中的线程,类似于notifyAll()
}

以AbstractQueuedSynchronizer,看看Condition中几个主要方法的实现原理。
首先看一下await()

        public final void await() throws InterruptedException {
            if (Thread.interrupted())
                throw new InterruptedException();
            Node node = addConditionWaiter();
            int savedState = fullyRelease(node);
            int interruptMode = 0;
            while (!isOnSyncQueue(node)) {
                LockSupport.park(this);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
            }
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null) // clean up if cancelled
                unlinkCancelledWaiters();
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
        }

一步一步分析,先看addConditionWaiter()

       private Node addConditionWaiter() {
            Node t = lastWaiter;
            // If lastWaiter is cancelled, clean out.
            if (t != null && t.waitStatus != Node.CONDITION) {
                unlinkCancelledWaiters();
                t = lastWaiter;
            }
            Node node = new Node(Thread.currentThread(), Node.CONDITION);
            if (t == null)
                firstWaiter = node;
            else
                t.nextWaiter = node;
            lastWaiter = node;
            return node;
        }

代码目的很明显了,将当前线程加入到等待节点中。在看看下一步fullyRelease

    final int fullyRelease(Node node) {
        boolean failed = true;
        try {
            int savedState = getState();
            if (release(savedState)) {
                failed = false;
                return savedState;
            } else {
                throw new IllegalMonitorStateException();
            }
        } finally {
            if (failed)
                node.waitStatus = Node.CANCELLED;
        }
    }

可以看到这部分代码是释放当前线程所持有的锁,在release()方法中同时会唤醒等待锁的线程,这个在上一篇将lock的文章分析过,这里就不阐述了。
继续往下,将执行这段循环

  while (!isOnSyncQueue(node)) {
                LockSupport.park(this);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
            }

看一看其中的isOnSyncQueue方法

    final boolean isOnSyncQueue(Node node) {
        if (node.waitStatus == Node.CONDITION || node.prev == null)
            return false;
        if (node.next != null) // If has successor, it must be on queue
            return true;
        return findNodeFromTail(node);
    }

   private boolean findNodeFromTail(Node node) {
        Node t = tail;
        for (;;) {
            if (t == node)
                return true;
            if (t == null)
                return false;
            t = t.prev;
        }
    }

这段就是判断是否节点已经加入了AbstractQueuedSynchronizer的队列中。直到节点从队列中移除后才能成功挂起。
接下来是从挂起状态被唤醒后重新获取锁和一系列状态更新的操作。

    if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null) // clean up if cancelled
                unlinkCancelledWaiters();
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);

由此便完成了await过程。下面我们来看看signal

      public final void signal() {
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            Node first = firstWaiter;
            if (first != null)
                doSignal(first);
        }

       private void doSignal(Node first) {
            do {
                if ( (firstWaiter = first.nextWaiter) == null)
                    lastWaiter = null;
                first.nextWaiter = null;
            } while (!transferForSignal(first) &&
                     (first = firstWaiter) != null);
        }

通过transferForSignal方法将头节点唤醒,也使用了cas操作保证一致性。

    final boolean transferForSignal(Node node) {
        if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
            return false;
        Node p = enq(node);
        int ws = p.waitStatus;
        if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
            LockSupport.unpark(node.thread);
        return true;
    }

唤醒后将使下一个节点成为头节点。至此signal过程结束。
下面看看signalAll

        public final void signalAll() {
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            Node first = firstWaiter;
            if (first != null)
                doSignalAll(first);
        }

   private void doSignalAll(Node first) {
            lastWaiter = firstWaiter = null;
            do {
                Node next = first.nextWaiter;
                first.nextWaiter = null;
                transferForSignal(first);
                first = next;
            } while (first != null);
        }

    final boolean transferForSignal(Node node) {
        if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
            return false;
        Node p = enq(node);
        int ws = p.waitStatus;
        if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
            LockSupport.unpark(node.thread);
        return true;
    }

代码逻辑很清晰,从头节点开始唤醒所有节点。
下面我们在来看看awaitNanos方法,该方法可以让线程在指定的时间后被唤醒,或是被signal唤醒。

     public final long awaitNanos(long nanosTimeout)
                throws InterruptedException {
            if (Thread.interrupted())
                throw new InterruptedException();
            Node node = addConditionWaiter();
            int savedState = fullyRelease(node);
            final long deadline = System.nanoTime() + nanosTimeout;
            int interruptMode = 0;
            while (!isOnSyncQueue(node)) {
                if (nanosTimeout <= 0L) {
                    transferAfterCancelledWait(node);
                    break;
                }
                if (nanosTimeout >= spinForTimeoutThreshold)
                    LockSupport.parkNanos(this, nanosTimeout);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
                nanosTimeout = deadline - System.nanoTime();
            }
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null)
                unlinkCancelledWaiters();
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
            return deadline - System.nanoTime();
        }

重点看一下这段

     while (!isOnSyncQueue(node)) {
                if (nanosTimeout <= 0L) {
                    transferAfterCancelledWait(node);
                    break;
                }
                if (nanosTimeout >= spinForTimeoutThreshold)
                    LockSupport.parkNanos(this, nanosTimeout);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
                nanosTimeout = deadline - System.nanoTime();
            }

当nanosTimeout小于0即等待时间已到或已超过时,执行transferAfterCancelledWait方法:

    final boolean transferAfterCancelledWait(Node node) {
        if (compareAndSetWaitStatus(node, Node.CONDITION, 0)) {
            enq(node);
            return true;
        }

        while (!isOnSyncQueue(node))
            Thread.yield();
        return false;
    }

尝试更新节点状态,若更新失败的话直到节点从队列移除后返回。
在往下,spinForTimeoutThreshold值为1000,在这里的话就是1毫秒,因此在这里我们可以看到:当等待时间超过1毫秒时将线程挂起,但是挂起的这段时间可能被其他线程唤醒,因此在不足1毫秒时用忙等的方式等待等待时间的结束。最后方法返回实际的等待时间,

你可能感兴趣的:(JAVA并发编程)