你要的答案或许都在这里:小鹏的博客目录
MachineLP的Github(欢迎follow):https://github.com/MachineLP
注意:不要随便加BN,有些问题加了后会导致loss变大。
上一篇是 Batch Normalization的原理介绍,看一下tf的实现,加到卷积后面和全连接层后面都可:
(1)
训练的时候:is_training为True。
import tensorflow as tf
import numpy as np
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.training import moving_averages
def bn(x, is_training):
x_shape = x.get_shape()
params_shape = x_shape[-1:]
axis = list(range(len(x_shape) - 1))
beta = _get_variable('beta', params_shape, initializer=tf.zeros_initializer())
gamma = _get_variable('gamma', params_shape, initializer=tf.ones_initializer())
moving_mean = _get_variable('moving_mean', params_shape, initializer=tf.zeros_initializer(), trainable=False)
moving_variance = _get_variable('moving_variance', params_shape, initializer=tf.ones_initializer(), trainable=False)
# These ops will only be preformed when training.
mean, variance = tf.nn.moments(x, axis)
update_moving_mean = moving_averages.assign_moving_average(moving_mean, mean, BN_DECAY)
update_moving_variance = moving_averages.assign_moving_average(moving_variance, variance, BN_DECAY)
tf.add_to_collection(UPDATE_OPS_COLLECTION, update_moving_mean)
tf.add_to_collection(UPDATE_OPS_COLLECTION, update_moving_variance)
mean, variance = control_flow_ops.cond(
is_training, lambda: (mean, variance),
lambda: (moving_mean, moving_variance))
return tf.nn.batch_normalization(x, mean, variance, beta, gamma, BN_EPSILON)
函数:
tf.nn.batch_normalization()
def batch_normalization(x,
mean,
variance,
offset,
scale,
variance_epsilon,
name=None):
Args:
Tensor
of arbitrary dimensionality.Tensor
.Tensor
.Tensor
, often denoted β in equations, or None. If present, will be added to the normalized tensor.Tensor
, often denoted γ in equations, or None
. If present, the scale is applied to the normalized tensor.另外,这里有使用batch normalization的示例:martin-gorner/tensorflow-mnist-tutorial
还可以参考:resnet:https://github.com/MachineLP/tensorflow-resnet
还可以看大师之作:CNN和RNN中如何引入BatchNorm
训练好的模型加载:tensorflow中batch normalization的用法