索引是faiss的关键知识,我们重点介绍下。
索引方法汇总
有些索引名,我就不翻译了,根据英文名去学习更准确。
索引名 | 类名 | index_factory | 主要参数 | 字节数/向量 | 精准检索 | 备注 |
---|---|---|---|---|---|---|
精准的L2搜索 | IndexFlatL2 | "Flat" | d | 4*d | yes | brute-force |
精准的内积搜索 | IndexFlatIP | "Flat" | d | 4*d | yes | 归一化向量计算cos |
Hierarchical Navigable Small World graph exploration | IndexHNSWFlat | "HNSWx,Flat" | d, M | 4d + 8 M | no | - |
倒排文件 | IndexIVFFlat | "IVFx,Flat" | quantizer, d, nlists, metric | 4*d | no | 需要另一个量化器来建立倒排 |
Locality-Sensitive Hashing (binary flat index) | IndexLSH | - | d, nbits | nbits/8 | yes | optimized by using random rotation instead of random projections |
Scalar quantizer (SQ) in flat mode | IndexScalarQuantizer | "SQ8" | d | d | yes | 每个维度项可以用4 bit表示,但是精度会受到一定影响 |
Product quantizer (PQ) in flat mode | IndexPQ | "PQx" | d, M, nbits | M (if nbits=8) | yes | - |
IVF and scalar quantizer | IndexIVFScalarQuantizer | "IVFx,SQ4" "IVFx,SQ8" | quantizer, d, nlists, qtype | d or d/2 | no | 有两种编码方式:每个维度项4bit或8bit |
IVFADC (coarse quantizer+PQ on residuals) | IndexIVFPQ | "IVFx,PQy" | quantizer, d, nlists, M, nbits | M+4 or M+8 | no | 内存和数据id(int、long)相关,目前只支持 nbits <= 8 |
IVFADC+R (same as IVFADC with re-ranking based on codes) | IndexIVFPQR | "IVFx,PQy+z" | quantizer, d, nlists, M, nbits, M_refine, nbits_refine | M+M_refine+4 or M+M_refine+8 | no | - |
Cell-probe方法
加速查找的典型方法是对数据集进行划分,我们采用了基于Multi-probing(best-bin KD树变体)的分块方法。
- 特征空间被切分为ncells个块
- 数据被划分到这些块中(k-means可根据最近欧式距离),归属关系存储在ncells个节点的倒排列表中
- 搜索时,检索离目标距离最近的nprobe个块
- 根据倒排列表检索nprobe个块中的所有数据。
这便是IndexIVFFlat,它需要另一个索引来记录倒排列表。
IndexIVFKmeans 和 IndexIVFSphericalKmeans 不是对象而是方法,它们可以返回IndexIVFFlat对象。
注意:对于高维的数据,要达到较好的召回,需要的nprobes可能很大
和LSH的关系
最流行的cell-probe方法可能是原生的LSH方法,可参考E2LSH。然而,这个方法及其变体有两大弊端:
- 需要大量的哈希函数(=分块数),来达到可以接受的结果
- 哈希函数很难基于输入动态调整,实际应用中容易返回次优结果
LSH的示例
n_bits = 2 * d
lsh = faiss.IndexLSH (d, n_bits)
lsh.train (x_train)
lsh.add (x_base)
D, I = lsh.search (x_query, k)
d是输入数据的维度,nbits是存储向量的bits数目。
PQ的示例
m = 16 # number of subquantizers
n_bits = 8 # bits allocated per subquantizer
pq = faiss.IndexPQ (d, m, n_bits) # Create the index
pq.train (x_train) # Training
pq.add (x_base) # Populate the index
D, I = pq.search (x_query, k) # Perform a search
带倒排的PQ:IndexIVFPQ
coarse_quantizer = faiss.IndexFlatL2 (d)
index = faiss.IndexIVFPQ (coarse_quantizer, d,
ncentroids, m, 8)
index.nprobe = 5
复合索引
使用PQ作粗粒度量化器的Cell Probe方法
相应的文章见:The inverted multi-index, Babenko & Lempitsky, CVPR'12。在Faiss中可使用MultiIndexQuantizer,它不需要add任何向量,因此将它应用在IndexIVF时需要设置quantizer_trains_alone。
nbits_mi = 12 # c
M_mi = 2 # m
coarse_quantizer_mi = faiss.MultiIndexQuantizer(d, M_mi, nbits_mi)
ncentroids_mi = 2 ** (M_mi * nbits_mi)
index = faiss.IndexIVFFlat(coarse_quantizer_mi, d, ncentroids_mi)
index.nprobe = 2048
index.quantizer_trains_alone = True
预过滤PQ编码,汉明距离的计算比PQ距离计算快6倍,通过对PQ中心的合理重排序,汉明距离可以正确地替代PQ编码距离。在搜索时设置汉明距离的阈值,可以避免PQ比较的大量运算。
# IndexPQ
index = faiss.IndexPQ (d, 16, 8)
# before training
index.do_polysemous_training = true
index.train (...)
# before searching
index.search_type = faiss.IndexPQ.ST_polysemous
index.polysemous_ht = 54 # the Hamming threshold
index.search (...)
# IndexIVFPQ
index = faiss.IndexIVFPQ (coarse_quantizer, d, 16, 8)
# before training
index. do_polysemous_training = true
index.train (...)
# before searching
index.polysemous_ht = 54 # the Hamming threshold
index.search (...)
阈值设定是注意两点:
- 阈值在0到编码bit数(16*8)之间
- 阈值越小,留下的需要计算的PQ中心数越少,推荐<1/2*bits
复合索引中也可以建立多级PQ量化索引。
预处理和后处理
为了获得更好的索引,可以remap向量ids,对数据集进行变换,re-rank检索结果等。
Faiss id mapping
默认情况下,Faiss为每个向量设置id。有些Index实现了add_with_ids方法,为向量添加64bit的ids,检索时返回ids而不需返回原始向量。
index = faiss.IndexFlatL2(xb.shape[1])
ids = np.arange(xb.shape[0])
index.add_with_ids(xb, ids) # this will crash, because IndexFlatL2 does not support add_with_ids
index2 = faiss.IndexIDMap(index)
index2.add_with_ids(xb, ids) # works, the vectors are stored in the underlying index
IndexIVF原生提供了ass_with_ids方法,就不需要IndexIDMap了。
预变换
变换方法 | 类名 | 备注 |
---|---|---|
random rotation | RandomRotationMatrix | useful to re-balance components of a vector before indexing in an IndexPQ or IndexLSH |
remapping of dimensions | RemapDimensionsTransform | 为适应索引推荐的维度,通过重排列减少或增加向量维度d |
PCA | PCAMatrix | 降维 |
OPQ rotation | OPQMatrix | OPQ通过旋转输入向量更利于PQ编码,见 Optimized product quantization, Ge et al., CVPR'13 |
换行可以通过train进行训练,通过apply应用到数据上。这些变化可以通过IndexPreTransform方法应用到索引上。
# the IndexIVFPQ will be in 256D not 2048
coarse_quantizer = faiss.IndexFlatL2 (256)
sub_index = faiss.IndexIVFPQ (coarse_quantizer, 256, ncoarse, 16, 8)
# PCA 2048->256
# also does a random rotation after the reduction (the 4th argument)
pca_matrix = faiss.PCAMatrix (2048, 256, 0, True)
#- the wrapping index
index = faiss.IndexPreTransform (pca_matrix, sub_index)
# will also train the PCA
index.train(...)
# PCA will be applied prior to addition
index.add(...)
IndexRefineFlat
对搜索结果进行精准重排序
q = faiss.IndexPQ (d, M, nbits_per_index)
rq = faiss.IndexRefineFlat (q)
rq.train (xt)
rq.add (xb)
rq.k_factor = 4
D, I = rq:search (xq, 10)
从IndexPQ的最近4*10个邻域中,计算真实距离,返回最好的10个结果。注意IndexRefineFlat需要积累全向量,占用内存较高。
IndexShards
如果数据分开为多个索引,查询时需要合并结果集。这在多GPU以及平行查询中是必需的。