R for Data Science总结之——Tidy Data

R for Data Science总结之——Tidy Data

在R中进行数据挖掘要求数据集具有tidy data的特征,这有点类似数据库中的范式结构:

  • 每一个变量都有自己独立的一列
  • 每一个观测值都有自己独立的一行
  • 每一个数据都是独立的单元格

R for Data Science总结之——Tidy Data_第1张图片
这里我们会用到tidyr包来处理每一个数据集使其拥有tidy data的特征,其包含在tidyverse框架中:

library(tidyverse)

table1
#> # A tibble: 6 x 4
#>   country      year  cases population
#>                  
#> 1 Afghanistan  1999    745   19987071
#> 2 Afghanistan  2000   2666   20595360
#> 3 Brazil       1999  37737  172006362
#> 4 Brazil       2000  80488  174504898
#> 5 China        1999 212258 1272915272
#> 6 China        2000 213766 1280428583
table2
#> # A tibble: 12 x 4
#>   country      year type           count
#>                     
#> 1 Afghanistan  1999 cases            745
#> 2 Afghanistan  1999 population  19987071
#> 3 Afghanistan  2000 cases           2666
#> 4 Afghanistan  2000 population  20595360
#> 5 Brazil       1999 cases          37737
#> 6 Brazil       1999 population 172006362
#> # ... with 6 more rows
table3
#> # A tibble: 6 x 3
#>   country      year rate             
#> *                     
#> 1 Afghanistan  1999 745/19987071     
#> 2 Afghanistan  2000 2666/20595360    
#> 3 Brazil       1999 37737/172006362  
#> 4 Brazil       2000 80488/174504898  
#> 5 China        1999 212258/1272915272
#> 6 China        2000 213766/1280428583

# Spread across two tibbles
table4a  # cases
#> # A tibble: 3 x 3
#>   country     `1999` `2000`
#> *           
#> 1 Afghanistan    745   2666
#> 2 Brazil       37737  80488
#> 3 China       212258 213766
table4b  # population
#> # A tibble: 3 x 3
#>   country         `1999`     `2000`
#> *                   
#> 1 Afghanistan   19987071   20595360
#> 2 Brazil       172006362  174504898
#> 3 China       1272915272 1280428583

这之中只有table1符合tidy data的要求,而拥有tidy的特征是使用dplyr中mutate, summary等函数的基础:

# Compute rate per 10,000
table1 %>% 
  mutate(rate = cases / population * 10000)
#> # A tibble: 6 x 5
#>   country      year  cases population  rate
#>                   
#> 1 Afghanistan  1999    745   19987071 0.373
#> 2 Afghanistan  2000   2666   20595360 1.29 
#> 3 Brazil       1999  37737  172006362 2.19 
#> 4 Brazil       2000  80488  174504898 4.61 
#> 5 China        1999 212258 1272915272 1.67 
#> 6 China        2000 213766 1280428583 1.67

# Compute cases per year
table1 %>% 
  count(year, wt = cases)
#> # A tibble: 2 x 2
#>    year      n
#>     
#> 1  1999 250740
#> 2  2000 296920

# Visualise changes over time
library(ggplot2)
ggplot(table1, aes(year, cases)) + 
  geom_line(aes(group = country), colour = "grey50") + 
  geom_point(aes(colour = country))

R for Data Science总结之——Tidy Data_第2张图片

Gathering

table4a
#> # A tibble: 3 x 3
#>   country     `1999` `2000`
#> *           
#> 1 Afghanistan    745   2666
#> 2 Brazil       37737  80488
#> 3 China       212258 213766

这个数据集中两列1999和2000是数值而不是变量,列名应放在变量year和cases中:

table4a %>% 
  gather(`1999`, `2000`, key = "year", value = "cases")
#> # A tibble: 6 x 3
#>   country     year   cases
#>            
#> 1 Afghanistan 1999     745
#> 2 Brazil      1999   37737
#> 3 China       1999  212258
#> 4 Afghanistan 2000    2666
#> 5 Brazil      2000   80488
#> 6 China       2000  213766

对于table4b同理:

table4b %>% 
  gather(`1999`, `2000`, key = "year", value = "population")
#> # A tibble: 6 x 3
#>   country     year  population
#>                
#> 1 Afghanistan 1999    19987071
#> 2 Brazil      1999   172006362
#> 3 China       1999  1272915272
#> 4 Afghanistan 2000    20595360
#> 5 Brazil      2000   174504898
#> 6 China       2000  1280428583

将table4a和table4b合并成一个数据集可用join函数:

tidy4a <- table4a %>% 
  gather(`1999`, `2000`, key = "year", value = "cases")
tidy4b <- table4b %>% 
  gather(`1999`, `2000`, key = "year", value = "population")
left_join(tidy4a, tidy4b)
#> Joining, by = c("country", "year")
#> # A tibble: 6 x 4
#>   country     year   cases population
#>                  
#> 1 Afghanistan 1999     745   19987071
#> 2 Brazil      1999   37737  172006362
#> 3 China       1999  212258 1272915272
#> 4 Afghanistan 2000    2666   20595360
#> 5 Brazil      2000   80488  174504898
#> 6 China       2000  213766 1280428583

Spreading

spread与gather恰恰相反是将列中的值变为列名:

table2
#> # A tibble: 12 x 4
#>   country      year type           count
#>                     
#> 1 Afghanistan  1999 cases            745
#> 2 Afghanistan  1999 population  19987071
#> 3 Afghanistan  2000 cases           2666
#> 4 Afghanistan  2000 population  20595360
#> 5 Brazil       1999 cases          37737
#> 6 Brazil       1999 population 172006362
#> # ... with 6 more rows

table2 %>%
    spread(key = type, value = count)
#> # A tibble: 6 x 4
#>   country      year  cases population
#>                  
#> 1 Afghanistan  1999    745   19987071
#> 2 Afghanistan  2000   2666   20595360
#> 3 Brazil       1999  37737  172006362
#> 4 Brazil       2000  80488  174504898
#> 5 China        1999 212258 1272915272
#> 6 China        2000 213766 1280428583

Separating

对于一些数据集,某一列可以分解成两列或者某两列需要整合成一列:

table3
#> # A tibble: 6 x 3
#>   country      year rate             
#> *                     
#> 1 Afghanistan  1999 745/19987071     
#> 2 Afghanistan  2000 2666/20595360    
#> 3 Brazil       1999 37737/172006362  
#> 4 Brazil       2000 80488/174504898  
#> 5 China        1999 212258/1272915272
#> 6 China        2000 213766/1280428583

table3 %>% 
  separate(rate, into = c("cases", "population"))
#> # A tibble: 6 x 4
#>   country      year cases  population
#> *                
#> 1 Afghanistan  1999 745    19987071  
#> 2 Afghanistan  2000 2666   20595360  
#> 3 Brazil       1999 37737  172006362 
#> 4 Brazil       2000 80488  174504898 
#> 5 China        1999 212258 1272915272
#> 6 China        2000 213766 1280428583

默认分离标识符为/也可以在sep参数中进行修改:

table3 %>% 
  separate(rate, into = c("cases", "population"), sep = "/")

为了将生成的列赋予更好的类型,可以修改convert参数:

table3 %>% 
  separate(rate, into = c("cases", "population"), convert = TRUE)
#> # A tibble: 6 x 4
#>   country      year  cases population
#> *                
#> 1 Afghanistan  1999    745   19987071
#> 2 Afghanistan  2000   2666   20595360
#> 3 Brazil       1999  37737  172006362
#> 4 Brazil       2000  80488  174504898
#> 5 China        1999 212258 1272915272
#> 6 China        2000 213766 1280428583

也可以修改sep参数从第几个数值开始分割:

table3 %>% 
  separate(year, into = c("century", "year"), sep = 2)
#> # A tibble: 6 x 4
#>   country     century year  rate             
#> *                        
#> 1 Afghanistan 19      99    745/19987071     
#> 2 Afghanistan 20      00    2666/20595360    
#> 3 Brazil      19      99    37737/172006362  
#> 4 Brazil      20      00    80488/174504898  
#> 5 China       19      99    212258/1272915272
#> 6 China       20      00    213766/1280428583

Uniting

unite与separate恰好相反

table5 %>% 
  unite(new, century, year)
#> # A tibble: 6 x 3
#>   country     new   rate             
#>                       
#> 1 Afghanistan 19_99 745/19987071     
#> 2 Afghanistan 20_00 2666/20595360    
#> 3 Brazil      19_99 37737/172006362  
#> 4 Brazil      20_00 80488/174504898  
#> 5 China       19_99 212258/1272915272
#> 6 China       20_00 213766/1280428583

table5 %>% 
  unite(new, century, year)
#> # A tibble: 6 x 3
#>   country     new   rate             
#>                       
#> 1 Afghanistan 1999  745/19987071     
#> 2 Afghanistan 2000  2666/20595360    
#> 3 Brazil      1999  37737/172006362  
#> 4 Brazil      2000  80488/174504898  
#> 5 China       1999  212258/1272915272
#> 6 China       2000  213766/1280428583

table5 %>% 
  unite(new, century, year, sep = "")
#> # A tibble: 6 x 3
#>   country     new   rate             
#>                       
#> 1 Afghanistan 1999  745/19987071     
#> 2 Afghanistan 2000  2666/20595360    
#> 3 Brazil      1999  37737/172006362  
#> 4 Brazil      2000  80488/174504898  
#> 5 China       1999  212258/1272915272
#> 6 China       2000  213766/1280428583

缺省值

缺省值分为明确标识为NA与隐式缺省两种:

stocks <- tibble(
  year   = c(2015, 2015, 2015, 2015, 2016, 2016, 2016),
  qtr    = c(   1,    2,    3,    4,    2,    3,    4),
  return = c(1.88, 0.59, 0.35,   NA, 0.92, 0.17, 2.66)
)

其中2015年第四季度数据显式缺省,2016年第一季度数据隐式缺省。

stocks %>% 
  spread(year, return)
#> # A tibble: 4 x 3
#>     qtr `2015` `2016`
#>       
#> 1     1   1.88  NA   
#> 2     2   0.59   0.92
#> 3     3   0.35   0.17
#> 4     4  NA      2.66

去除这些数据可设置na.rm = TRUE:

stocks %>% 
  spread(year, return) %>% 
  gather(year, return, `2015`:`2016`, na.rm = TRUE)
#> # A tibble: 6 x 3
#>     qtr year  return
#> *    
#> 1     1 2015    1.88
#> 2     2 2015    0.59
#> 3     3 2015    0.35
#> 4     2 2016    0.92
#> 5     3 2016    0.17
#> 6     4 2016    2.66

另外也可使用complete()函数让这些数据显式呈现:

stocks %>% 
  complete(year, qtr)
#> # A tibble: 8 x 3
#>    year   qtr return
#>      
#> 1  2015     1   1.88
#> 2  2015     2   0.59
#> 3  2015     3   0.35
#> 4  2015     4  NA   
#> 5  2016     1  NA   
#> 6  2016     2   0.92
#> # ... with 2 more rows

有的时候一些数据集省略一些值是因为其和上值相同,这时可用fill()函数:

treatment <- tribble(
  ~ person,           ~ treatment, ~response,
  "Derrick Whitmore", 1,           7,
  NA,                 2,           10,
  NA,                 3,           9,
  "Katherine Burke",  1,           4
)

treatment %>% 
  fill(person)
#> # A tibble: 4 x 3
#>   person           treatment response
#>                       
#> 1 Derrick Whitmore         1        7
#> 2 Derrick Whitmore         2       10
#> 3 Derrick Whitmore         3        9
#> 4 Katherine Burke          1        4

实例研究

下面通过一个实例研究一个普通数据集整理成tidy data的过程:

who
#> # A tibble: 7,240 x 60
#>   country iso2  iso3   year new_sp_m014 new_sp_m1524 new_sp_m2534
#>                               
#> 1 Afghan… AF    AFG    1980          NA           NA           NA
#> 2 Afghan… AF    AFG    1981          NA           NA           NA
#> 3 Afghan… AF    AFG    1982          NA           NA           NA
#> 4 Afghan… AF    AFG    1983          NA           NA           NA
#> 5 Afghan… AF    AFG    1984          NA           NA           NA
#> 6 Afghan… AF    AFG    1985          NA           NA           NA
#> # ... with 7,234 more rows, and 53 more variables: new_sp_m3544 ,
#> #   new_sp_m4554 , new_sp_m5564 , new_sp_m65 ,
#> #   new_sp_f014 , new_sp_f1524 , new_sp_f2534 ,
#> #   new_sp_f3544 , new_sp_f4554 , new_sp_f5564 ,
#> #   new_sp_f65 , new_sn_m014 , new_sn_m1524 ,
#> #   new_sn_m2534 , new_sn_m3544 , new_sn_m4554 ,
#> #   new_sn_m5564 , new_sn_m65 , new_sn_f014 ,
#> #   new_sn_f1524 , new_sn_f2534 , new_sn_f3544 ,
#> #   new_sn_f4554 , new_sn_f5564 , new_sn_f65 ,
#> #   new_ep_m014 , new_ep_m1524 , new_ep_m2534 ,
#> #   new_ep_m3544 , new_ep_m4554 , new_ep_m5564 ,
#> #   new_ep_m65 , new_ep_f014 , new_ep_f1524 ,
#> #   new_ep_f2534 , new_ep_f3544 , new_ep_f4554 ,
#> #   new_ep_f5564 , new_ep_f65 , newrel_m014 ,
#> #   newrel_m1524 , newrel_m2534 , newrel_m3544 ,
#> #   newrel_m4554 , newrel_m5564 , newrel_m65 ,
#> #   newrel_f014 , newrel_f1524 , newrel_f2534 ,
#> #   newrel_f3544 , newrel_f4554 , newrel_f5564 ,
#> #   newrel_f65 

首先后面几列看起来像是某一列的数值,使用gather():

who1 <- who %>% 
  gather(new_sp_m014:newrel_f65, key = "key", value = "cases", na.rm = TRUE)
who1
#> # A tibble: 76,046 x 6
#>   country     iso2  iso3   year key         cases
#> *                  
#> 1 Afghanistan AF    AFG    1997 new_sp_m014     0
#> 2 Afghanistan AF    AFG    1998 new_sp_m014    30
#> 3 Afghanistan AF    AFG    1999 new_sp_m014     8
#> 4 Afghanistan AF    AFG    2000 new_sp_m014    52
#> 5 Afghanistan AF    AFG    2001 new_sp_m014   129
#> 6 Afghanistan AF    AFG    2002 new_sp_m014    90
#> # ... with 7.604e+04 more rows

我们在看一下key列的分布:

who1 %>% 
  count(key)
#> # A tibble: 56 x 2
#>   key              n
#>           
#> 1 new_ep_f014   1032
#> 2 new_ep_f1524  1021
#> 3 new_ep_f2534  1021
#> 4 new_ep_f3544  1021
#> 5 new_ep_f4554  1017
#> 6 new_ep_f5564  1017
#> # ... with 50 more rows

为了将key列完全分离,先将其变成规整格式:

who2 <- who1 %>% 
  mutate(key = stringr::str_replace(key, "newrel", "new_rel"))
who2
#> # A tibble: 76,046 x 6
#>   country     iso2  iso3   year key         cases
#>                    
#> 1 Afghanistan AF    AFG    1997 new_sp_m014     0
#> 2 Afghanistan AF    AFG    1998 new_sp_m014    30
#> 3 Afghanistan AF    AFG    1999 new_sp_m014     8
#> 4 Afghanistan AF    AFG    2000 new_sp_m014    52
#> 5 Afghanistan AF    AFG    2001 new_sp_m014   129
#> 6 Afghanistan AF    AFG    2002 new_sp_m014    90
#> # ... with 7.604e+04 more rows

所有的格式统一后,再separate():

who3 <- who2 %>% 
  separate(key, c("new", "type", "sexage"), sep = "_")
who3
#> # A tibble: 76,046 x 8
#>   country     iso2  iso3   year new   type  sexage cases
#>                 
#> 1 Afghanistan AF    AFG    1997 new   sp    m014       0
#> 2 Afghanistan AF    AFG    1998 new   sp    m014      30
#> 3 Afghanistan AF    AFG    1999 new   sp    m014       8
#> 4 Afghanistan AF    AFG    2000 new   sp    m014      52
#> 5 Afghanistan AF    AFG    2001 new   sp    m014     129
#> 6 Afghanistan AF    AFG    2002 new   sp    m014      90
#> # ... with 7.604e+04 more rows

我们再看一下new列,发现其实际为一个常数,则丢弃掉:

who3 %>% 
  count(new)
#> # A tibble: 1 x 2
#>   new       n
#>    
#> 1 new   76046
who4 <- who3 %>% 
  select(-new, -iso2, -iso3)

我们再将sex和age进行分离:

who5 <- who4 %>% 
  separate(sexage, c("sex", "age"), sep = 1)
who5
#> # A tibble: 76,046 x 6
#>   country      year type  sex   age   cases
#>              
#> 1 Afghanistan  1997 sp    m     014       0
#> 2 Afghanistan  1998 sp    m     014      30
#> 3 Afghanistan  1999 sp    m     014       8
#> 4 Afghanistan  2000 sp    m     014      52
#> 5 Afghanistan  2001 sp    m     014     129
#> 6 Afghanistan  2002 sp    m     014      90
#> # ... with 7.604e+04 more rows

这就完成了一个数据集的tidy过程,将整个流程综合成一个管道为:

who %>%
  gather(key, value, new_sp_m014:newrel_f65, na.rm = TRUE) %>% 
  mutate(key = stringr::str_replace(key, "newrel", "new_rel")) %>%
  separate(key, c("new", "var", "sexage")) %>% 
  select(-new, -iso2, -iso3) %>% 
  separate(sexage, c("sex", "age"), sep = 1)

全文代码已上传GITHUB点此进入

你可能感兴趣的:(R,Data,Science)