Java 集合系列05之 LinkedList详细介绍(源码解析)和使用示例

第1部分 LinkedList介绍

LinkedList简介

LinkedList 是一个继承于AbstractSequentialList的双向链表。它也可以被当作堆栈、队列或双端队列进行操作。
LinkedList 实现 List 接口,能对它进行队列操作。
LinkedList 实现 Deque 接口,即能将LinkedList当作双端队列使用。
LinkedList 实现了Cloneable接口,即覆盖了函数clone(),能克隆。
LinkedList 实现java.io.Serializable接口,这意味着LinkedList支持序列化,能通过序列化去传输。
LinkedList 是非同步的。

LinkedList构造函数

// 默认构造函数
LinkedList()

// 创建一个LinkedList,保护Collection中的全部元素。
LinkedList(Collection<? extends E> collection)

LinkedList的API

LinkedList的API
boolean       add(E object)
void          add(int location, E object)
boolean       addAll(Collection<? extends E> collection)
boolean       addAll(int location, Collection<? extends E> collection)
void          addFirst(E object)
void          addLast(E object)
void          clear()
Object        clone()
boolean       contains(Object object)
Iterator<E>   descendingIterator()
E             element()
E             get(int location)
E             getFirst()
E             getLast()
int           indexOf(Object object)
int           lastIndexOf(Object object)
ListIterator<E>     listIterator(int location)
boolean       offer(E o)
boolean       offerFirst(E e)
boolean       offerLast(E e)
E             peek()
E             peekFirst()
E             peekLast()
E             poll()
E             pollFirst()
E             pollLast()
E             pop()
void          push(E e)
E             remove()
E             remove(int location)
boolean       remove(Object object)
E             removeFirst()
boolean       removeFirstOccurrence(Object o)
E             removeLast()
boolean       removeLastOccurrence(Object o)
E             set(int location, E object)
int           size()
<T> T[]       toArray(T[] contents)
Object[]     toArray()

AbstractSequentialList简介

在介绍LinkedList的源码之前,先介绍一下AbstractSequentialList。毕竟,LinkedList是AbstractSequentialList的子类。

AbstractSequentialList 实现了get(int index)、set(int index, E element)、add(int index, E element) 和 remove(int index)这些函数。这些接口都是随机访问List的,LinkedList是双向链表;既然它继承于AbstractSequentialList,就相当于已经实现了“get(int index)这些接口”。

此外,我们若需要通过AbstractSequentialList自己实现一个列表,只需要扩展此类,并提供 listIterator() 和 size() 方法的实现即可。若要实现不可修改的列表,则需要实现列表迭代器的 hasNext、next、hasPrevious、previous 和 index 方法即可。

第2部分 LinkedList数据结构

LinkedList的继承关系

java.lang.Object
   ↳     java.util.AbstractCollection<E>
         ↳     java.util.AbstractList<E>
               ↳     java.util.AbstractSequentialList<E>
                     ↳     java.util.LinkedList<E>

public class LinkedList<E>
    extends AbstractSequentialList<E>
    implements List<E>, Deque<E>, Cloneable, java.io.Serializable {}

LinkedList与Collection关系如下图:

Java 集合系列05之 LinkedList详细介绍(源码解析)和使用示例_第1张图片

LinkedList的本质是双向链表。

(01) LinkedList继承于AbstractSequentialList,并且实现了Dequeue接口。
(02) LinkedList包含两个重要的成员:header 和 size。
  header是双向链表的表头,它是双向链表节点所对应的类Entry的实例。
  Entry中包含成员变量: previous, next, element。
  其中,previous是该节点的上一个节点,next是该节点的下一个节点,element是该节点所包含的值。
  size是双向链表中节点的个数。

第3部分 LinkedList源码解析(基于JDK1.6.0_45)

为了更了解LinkedList的原理,下面对LinkedList源码代码作出分析

在阅读源码之前,我们先对LinkedList的整体实现进行大致说明:
LinkedList实际上是通过双向链表去实现的。既然是双向链表,那么它的顺序访问会非常高效,而随机访问效率比较低。
既然LinkedList是通过双向链表的,但是它也实现了List接口{也就是说,它实现了get(int location)、remove(int location)等“根据索引值来获取、删除节点的函数”}。LinkedList是如何实现List的这些接口的,如何将“双向链表和索引值联系起来的”?
实际原理非常简单,它就是通过一个计数索引值来实现的。例如,当我们调用get(int location)时,首先会比较“location”和“双向链表长度的1/2”;若前者大,则从链表头开始往后查找,直到location位置;否则,从链表末尾开始先前查找,直到location位置。
这就是“双线链表和索引值联系起来”的方法。

好了,接下来开始阅读源码(只要理解双向链表,那么LinkedList的源码很容易理解的)。

package java.util;

public class LinkedList<E>
    extends AbstractSequentialList<E>
    implements List<E>, Deque<E>, Cloneable, java.io.Serializable
{
    // 链表的表头,表头不包含任何数据。Entry是个链表类数据结构。
    private transient Entry<E> header = new Entry<E>(null, null, null);

    // LinkedList中元素个数
    private transient int size = 0;

    // 默认构造函数:创建一个空的链表
    public LinkedList() {
        header.next = header.previous = header;
    }

    // 包含“集合”的构造函数:创建一个包含“集合”的LinkedList
    public LinkedList(Collection<? extends E> c) {
        this();
        addAll(c);
    }

    // 获取LinkedList的第一个元素
    public E getFirst() {
        if (size==0)
            throw new NoSuchElementException();

        // 链表的表头header中不包含数据。
        // 这里返回header所指下一个节点所包含的数据。
        return header.next.element;
    }

    // 获取LinkedList的最后一个元素
    public E getLast()  {
        if (size==0)
            throw new NoSuchElementException();

        // 由于LinkedList是双向链表;而表头header不包含数据。
        // 因而,这里返回表头header的前一个节点所包含的数据。
        return header.previous.element;
    }

    // 删除LinkedList的第一个元素
    public E removeFirst() {
        return remove(header.next);
    }

    // 删除LinkedList的最后一个元素
    public E removeLast() {
        return remove(header.previous);
    }

    // 将元素添加到LinkedList的起始位置
    public void addFirst(E e) {
        addBefore(e, header.next);
    }

    // 将元素添加到LinkedList的结束位置
    public void addLast(E e) {
        addBefore(e, header);
    }

    // 判断LinkedList是否包含元素(o)
    public boolean contains(Object o) {
        return indexOf(o) != -1;
    }

    // 返回LinkedList的大小
    public int size() {
        return size;
    }

    // 将元素(E)添加到LinkedList中
    public boolean add(E e) {
        // 将节点(节点数据是e)添加到表头(header)之前。
        // 即,将节点添加到双向链表的末端。
        addBefore(e, header);
        return true;
    }

    // 从LinkedList中删除元素(o)
    // 从链表开始查找,如存在元素(o)则删除该元素并返回true;
    // 否则,返回false。
    public boolean remove(Object o) {
        if (o==null) {
            // 若o为null的删除情况
            for (Entry<E> e = header.next; e != header; e = e.next) {
                if (e.element==null) {
                    remove(e);
                    return true;
                }
            }
        } else {
            // 若o不为null的删除情况
            for (Entry<E> e = header.next; e != header; e = e.next) {
                if (o.equals(e.element)) {
                    remove(e);
                    return true;
                }
            }
        }
        return false;
    }

    // 将“集合(c)”添加到LinkedList中。
    // 实际上,是从双向链表的末尾开始,将“集合(c)”添加到双向链表中。
    public boolean addAll(Collection<? extends E> c) {
        return addAll(size, c);
    }

    // 从双向链表的index开始,将“集合(c)”添加到双向链表中。
    public boolean addAll(int index, Collection<? extends E> c) {
        if (index < 0 || index > size)
            throw new IndexOutOfBoundsException("Index: "+index+
                                                ", Size: "+size);
        Object[] a = c.toArray();
        // 获取集合的长度
        int numNew = a.length;
        if (numNew==0)
            return false;
        modCount++;

        // 设置“当前要插入节点的后一个节点”
        Entry<E> successor = (index==size ? header : entry(index));
        // 设置“当前要插入节点的前一个节点”
        Entry<E> predecessor = successor.previous;
        // 将集合(c)全部插入双向链表中
        for (int i=0; i<numNew; i++) {
            Entry<E> e = new Entry<E>((E)a[i], successor, predecessor);
            predecessor.next = e;
            predecessor = e;
        }
        successor.previous = predecessor;

        // 调整LinkedList的实际大小
        size += numNew;
        return true;
    }

    // 清空双向链表
    public void clear() {
        Entry<E> e = header.next;
        // 从表头开始,逐个向后遍历;对遍历到的节点执行一下操作:
        // (01) 设置前一个节点为null 
        // (02) 设置当前节点的内容为null 
        // (03) 设置后一个节点为“新的当前节点”
        while (e != header) {
            Entry<E> next = e.next;
            e.next = e.previous = null;
            e.element = null;
            e = next;
        }
        header.next = header.previous = header;
        // 设置大小为0
        size = 0;
        modCount++;
    }

    // 返回LinkedList指定位置的元素
    public E get(int index) {
        return entry(index).element;
    }

    // 设置index位置对应的节点的值为element
    public E set(int index, E element) {
        Entry<E> e = entry(index);
        E oldVal = e.element;
        e.element = element;
        return oldVal;
    }
 
    // 在index前添加节点,且节点的值为element
    public void add(int index, E element) {
        addBefore(element, (index==size ? header : entry(index)));
    }

    // 删除index位置的节点
    public E remove(int index) {
        return remove(entry(index));
    }

    // 获取双向链表中指定位置的节点
    private Entry<E> entry(int index) {
        if (index < 0 || index >= size)
            throw new IndexOutOfBoundsException("Index: "+index+
                                                ", Size: "+size);
        Entry<E> e = header;
        // 获取index处的节点。
        // 若index < 双向链表长度的1/2,则从前先后查找;
        // 否则,从后向前查找。
        if (index < (size >> 1)) {
            for (int i = 0; i <= index; i++)
                e = e.next;
        } else {
            for (int i = size; i > index; i--)
                e = e.previous;
        }
        return e;
    }

    // 从前向后查找,返回“值为对象(o)的节点对应的索引”
    // 不存在就返回-1
    public int indexOf(Object o) {
        int index = 0;
        if (o==null) {
            for (Entry e = header.next; e != header; e = e.next) {
                if (e.element==null)
                    return index;
                index++;
            }
        } else {
            for (Entry e = header.next; e != header; e = e.next) {
                if (o.equals(e.element))
                    return index;
                index++;
            }
        }
        return -1;
    }

    // 从后向前查找,返回“值为对象(o)的节点对应的索引”
    // 不存在就返回-1
    public int lastIndexOf(Object o) {
        int index = size;
        if (o==null) {
            for (Entry e = header.previous; e != header; e = e.previous) {
                index--;
                if (e.element==null)
                    return index;
            }
        } else {
            for (Entry e = header.previous; e != header; e = e.previous) {
                index--;
                if (o.equals(e.element))
                    return index;
            }
        }
        return -1;
    }

    // 返回第一个节点
    // 若LinkedList的大小为0,则返回null
    public E peek() {
        if (size==0)
            return null;
        return getFirst();
    }

    // 返回第一个节点
    // 若LinkedList的大小为0,则抛出异常
    public E element() {
        return getFirst();
    }

    // 删除并返回第一个节点
    // 若LinkedList的大小为0,则返回null
    public E poll() {
        if (size==0)
            return null;
        return removeFirst();
    }

    // 将e添加双向链表末尾
    public boolean offer(E e) {
        return add(e);
    }

    // 将e添加双向链表开头
    public boolean offerFirst(E e) {
        addFirst(e);
        return true;
    }

    // 将e添加双向链表末尾
    public boolean offerLast(E e) {
        addLast(e);
        return true;
    }

    // 返回第一个节点
    // 若LinkedList的大小为0,则返回null
    public E peekFirst() {
        if (size==0)
            return null;
        return getFirst();
    }

    // 返回最后一个节点
    // 若LinkedList的大小为0,则返回null
    public E peekLast() {
        if (size==0)
            return null;
        return getLast();
    }

    // 删除并返回第一个节点
    // 若LinkedList的大小为0,则返回null
    public E pollFirst() {
        if (size==0)
            return null;
        return removeFirst();
    }

    // 删除并返回最后一个节点
    // 若LinkedList的大小为0,则返回null
    public E pollLast() {
        if (size==0)
            return null;
        return removeLast();
    }

    // 将e插入到双向链表开头
    public void push(E e) {
        addFirst(e);
    }

    // 删除并返回第一个节点
    public E pop() {
        return removeFirst();
    }

    // 从LinkedList开始向后查找,删除第一个值为元素(o)的节点
    // 从链表开始查找,如存在节点的值为元素(o)的节点,则删除该节点
    public boolean removeFirstOccurrence(Object o) {
        return remove(o);
    }

    // 从LinkedList末尾向前查找,删除第一个值为元素(o)的节点
    // 从链表开始查找,如存在节点的值为元素(o)的节点,则删除该节点
    public boolean removeLastOccurrence(Object o) {
        if (o==null) {
            for (Entry<E> e = header.previous; e != header; e = e.previous) {
                if (e.element==null) {
                    remove(e);
                    return true;
                }
            }
        } else {
            for (Entry<E> e = header.previous; e != header; e = e.previous) {
                if (o.equals(e.element)) {
                    remove(e);
                    return true;
                }
            }
        }
        return false;
    }

    // 返回“index到末尾的全部节点”对应的ListIterator对象(List迭代器)
    public ListIterator<E> listIterator(int index) {
        return new ListItr(index);
    }

    // List迭代器
    private class ListItr implements ListIterator<E> {
        // 上一次返回的节点
        private Entry<E> lastReturned = header;
        // 下一个节点
        private Entry<E> next;
        // 下一个节点对应的索引值
        private int nextIndex;
        // 期望的改变计数。用来实现fail-fast机制。
        private int expectedModCount = modCount;

        // 构造函数。
        // 从index位置开始进行迭代
        ListItr(int index) {
            // index的有效性处理
            if (index < 0 || index > size)
                throw new IndexOutOfBoundsException("Index: "+index+ ", Size: "+size);
            // 若 “index 小于 ‘双向链表长度的一半’”,则从第一个元素开始往后查找;
            // 否则,从最后一个元素往前查找。
            if (index < (size >> 1)) {
                next = header.next;
                for (nextIndex=0; nextIndex<index; nextIndex++)
                    next = next.next;
            } else {
                next = header;
                for (nextIndex=size; nextIndex>index; nextIndex--)
                    next = next.previous;
            }
        }

        // 是否存在下一个元素
        public boolean hasNext() {
            // 通过元素索引是否等于“双向链表大小”来判断是否达到最后。
            return nextIndex != size;
        }

        // 获取下一个元素
        public E next() {
            checkForComodification();
            if (nextIndex == size)
                throw new NoSuchElementException();

            lastReturned = next;
            // next指向链表的下一个元素
            next = next.next;
            nextIndex++;
            return lastReturned.element;
        }

        // 是否存在上一个元素
        public boolean hasPrevious() {
            // 通过元素索引是否等于0,来判断是否达到开头。
            return nextIndex != 0;
        }

        // 获取上一个元素
        public E previous() {
            if (nextIndex == 0)
            throw new NoSuchElementException();

            // next指向链表的上一个元素
            lastReturned = next = next.previous;
            nextIndex--;
            checkForComodification();
            return lastReturned.element;
        }

        // 获取下一个元素的索引
        public int nextIndex() {
            return nextIndex;
        }

        // 获取上一个元素的索引
        public int previousIndex() {
            return nextIndex-1;
        }

        // 删除当前元素。
        // 删除双向链表中的当前节点
        public void remove() {
            checkForComodification();
            Entry<E> lastNext = lastReturned.next;
            try {
                LinkedList.this.remove(lastReturned);
            } catch (NoSuchElementException e) {
                throw new IllegalStateException();
            }
            if (next==lastReturned)
                next = lastNext;
            else
                nextIndex--;
            lastReturned = header;
            expectedModCount++;
        }

        // 设置当前节点为e
        public void set(E e) {
            if (lastReturned == header)
                throw new IllegalStateException();
            checkForComodification();
            lastReturned.element = e;
        }

        // 将e添加到当前节点的前面
        public void add(E e) {
            checkForComodification();
            lastReturned = header;
            addBefore(e, next);
            nextIndex++;
            expectedModCount++;
        }

        // 判断 “modCount和expectedModCount是否相等”,依次来实现fail-fast机制。
        final void checkForComodification() {
            if (modCount != expectedModCount)
            throw new ConcurrentModificationException();
        }
    }

    // 双向链表的节点所对应的数据结构。
    // 包含3部分:上一节点,下一节点,当前节点值。
    private static class Entry<E> {
        // 当前节点所包含的值
        E element;
        // 下一个节点
        Entry<E> next;
        // 上一个节点
        Entry<E> previous;

        /**
         * 链表节点的构造函数。
         * 参数说明:
         *   element  —— 节点所包含的数据
         *   next      —— 下一个节点
         *   previous —— 上一个节点
         */
        Entry(E element, Entry<E> next, Entry<E> previous) {
            this.element = element;
            this.next = next;
            this.previous = previous;
        }
    }

    // 将节点(节点数据是e)添加到entry节点之前。
    private Entry<E> addBefore(E e, Entry<E> entry) {
        // 新建节点newEntry,将newEntry插入到节点e之前;并且设置newEntry的数据是e
        Entry<E> newEntry = new Entry<E>(e, entry, entry.previous);
        newEntry.previous.next = newEntry;
        newEntry.next.previous = newEntry;
        // 修改LinkedList大小
        size++;
        // 修改LinkedList的修改统计数:用来实现fail-fast机制。
        modCount++;
        return newEntry;
    }

    // 将节点从链表中删除
    private E remove(Entry<E> e) {
        if (e == header)
            throw new NoSuchElementException();

        E result = e.element;
        e.previous.next = e.next;
        e.next.previous = e.previous;
        e.next = e.previous = null;
        e.element = null;
        size--;
        modCount++;
        return result;
    }

    // 反向迭代器
    public Iterator<E> descendingIterator() {
        return new DescendingIterator();
    }

    // 反向迭代器实现类。
    private class DescendingIterator implements Iterator {
        final ListItr itr = new ListItr(size());
        // 反向迭代器是否下一个元素。
        // 实际上是判断双向链表的当前节点是否达到开头
        public boolean hasNext() {
            return itr.hasPrevious();
        }
        // 反向迭代器获取下一个元素。
        // 实际上是获取双向链表的前一个节点
        public E next() {
            return itr.previous();
        }
        // 删除当前节点
        public void remove() {
            itr.remove();
        }
    }


    // 返回LinkedList的Object[]数组
    public Object[] toArray() {
    // 新建Object[]数组
    Object[] result = new Object[size];
        int i = 0;
        // 将链表中所有节点的数据都添加到Object[]数组中
        for (Entry<E> e = header.next; e != header; e = e.next)
            result[i++] = e.element;
    return result;
    }

    // 返回LinkedList的模板数组。所谓模板数组,即可以将T设为任意的数据类型
    public <T> T[] toArray(T[] a) {
        // 若数组a的大小 < LinkedList的元素个数(意味着数组a不能容纳LinkedList中全部元素)
        // 则新建一个T[]数组,T[]的大小为LinkedList大小,并将该T[]赋值给a。
        if (a.length < size)
            a = (T[])java.lang.reflect.Array.newInstance(
                                a.getClass().getComponentType(), size);
        // 将链表中所有节点的数据都添加到数组a中
        int i = 0;
        Object[] result = a;
        for (Entry<E> e = header.next; e != header; e = e.next)
            result[i++] = e.element;

        if (a.length > size)
            a[size] = null;

        return a;
    }


    // 克隆函数。返回LinkedList的克隆对象。
    public Object clone() {
        LinkedList<E> clone = null;
        // 克隆一个LinkedList克隆对象
        try {
            clone = (LinkedList<E>) super.clone();
        } catch (CloneNotSupportedException e) {
            throw new InternalError();
        }

        // 新建LinkedList表头节点
        clone.header = new Entry<E>(null, null, null);
        clone.header.next = clone.header.previous = clone.header;
        clone.size = 0;
        clone.modCount = 0;

        // 将链表中所有节点的数据都添加到克隆对象中
        for (Entry<E> e = header.next; e != header; e = e.next)
            clone.add(e.element);

        return clone;
    }

    // java.io.Serializable的写入函数
    // 将LinkedList的“容量,所有的元素值”都写入到输出流中
    private void writeObject(java.io.ObjectOutputStream s)
        throws java.io.IOException {
        // Write out any hidden serialization magic
        s.defaultWriteObject();

        // 写入“容量”
        s.writeInt(size);

        // 将链表中所有节点的数据都写入到输出流中
        for (Entry e = header.next; e != header; e = e.next)
            s.writeObject(e.element);
    }

    // java.io.Serializable的读取函数:根据写入方式反向读出
    // 先将LinkedList的“容量”读出,然后将“所有的元素值”读出
    private void readObject(java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {
        // Read in any hidden serialization magic
        s.defaultReadObject();

        // 从输入流中读取“容量”
        int size = s.readInt();

        // 新建链表表头节点
        header = new Entry<E>(null, null, null);
        header.next = header.previous = header;

        // 从输入流中将“所有的元素值”并逐个添加到链表中
        for (int i=0; i<size; i++)
            addBefore((E)s.readObject(), header);
    }

}

总结:
(01) LinkedList 实际上是通过双向链表去实现的。
它包含一个非常重要的内部类:EntryEntry是双向链表节点所对应的数据结构,它包括的属性有:当前节点所包含的值,上一个节点,下一个节点
(02) 从LinkedList的实现方式中可以发现,它不存在LinkedList容量不足的问题。
(03) LinkedList的克隆函数,即是将全部元素克隆到一个新的LinkedList对象中。
(04) LinkedList实现java.io.Serializable。当写入到输出流时,先写入“容量”,再依次写入“每一个节点保护的值”;当读出输入流时,先读取“容量”,再依次读取“每一个元素”。
(05) 由于LinkedList实现了Deque,而Deque接口定义了在双端队列两端访问元素的方法。提供插入、移除和检查元素的方法。每种方法都存在两种形式:一种形式在操作失败时抛出异常,另一种形式返回一个特殊值(null 或 false,具体取决于操作)。

总结起来如下表格:

        第一个元素(头部)                 最后一个元素(尾部)
        抛出异常        特殊值            抛出异常        特殊值
插入    addFirst(e)    offerFirst(e)    addLast(e)        offerLast(e)
移除    removeFirst()  pollFirst()      removeLast()    pollLast()
检查    getFirst()     peekFirst()      getLast()        peekLast()

(06) LinkedList可以作为FIFO(先进先出)的队列,作为FIFO的队列时,下表的方法等价:

队列方法       等效方法
add(e)        addLast(e)
offer(e)      offerLast(e)
remove()      removeFirst()
poll()        pollFirst()
element()     getFirst()
peek()        peekFirst()

(07) LinkedList可以作为LIFO(后进先出)的栈,作为LIFO的栈时,下表的方法等价:

栈方法        等效方法
push(e)      addFirst(e)
pop()        removeFirst()
peek()       peekFirst()

第4部分 LinkedList遍历方式

LinkedList遍历方式

LinkedList支持多种遍历方式。建议不要采用随机访问的方式去遍历LinkedList,而采用逐个遍历的方式。
(01) 第一种,通过迭代器遍历。即通过Iterator去遍历。

for(Iterator iter = list.iterator(); iter.hasNext();)
    iter.next();

(02) 通过快速随机访问遍历LinkedList

int size = list.size();
for (int i=0; i<size; i++) {
    list.get(i);        
}

(03) 通过另外一种for循环来遍历LinkedList

for (Integer integ:list) 
    ;

(04) 通过**pollFirst()**来遍历LinkedList

while(list.pollFirst() != null)
    ;

(05) 通过**pollLast()**来遍历LinkedList

while(list.pollLast() != null)
    ;

(06) 通过**removeFirst()**来遍历LinkedList

try {
    while(list.removeFirst() != null)
        ;
} catch (NoSuchElementException e) {
}

(07) 通过**removeLast()**来遍历LinkedList

try {
    while(list.removeLast() != null)
        ;
} catch (NoSuchElementException e) {
}

测试这些遍历方式效率的代码如下:

import java.util.List;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.NoSuchElementException;

/*
 * @desc 测试LinkedList的几种遍历方式和效率
 *
 * @author skywang
 */
public class LinkedListThruTest {
    public static void main(String[] args) {
        // 通过Iterator遍历LinkedList
        iteratorLinkedListThruIterator(getLinkedList()) ;
        
        // 通过快速随机访问遍历LinkedList
        iteratorLinkedListThruForeach(getLinkedList()) ;

        // 通过for循环的变种来访问遍历LinkedList
        iteratorThroughFor2(getLinkedList()) ;

        // 通过PollFirst()遍历LinkedList
        iteratorThroughPollFirst(getLinkedList()) ;

        // 通过PollLast()遍历LinkedList
        iteratorThroughPollLast(getLinkedList()) ;

        // 通过removeFirst()遍历LinkedList
        iteratorThroughRemoveFirst(getLinkedList()) ;

        // 通过removeLast()遍历LinkedList
        iteratorThroughRemoveLast(getLinkedList()) ;
    }
    
    private static LinkedList getLinkedList() {
        LinkedList llist = new LinkedList();
        for (int i=0; i<100000; i++)
            llist.addLast(i);

        return llist;
    }
    /**
     * 通过快迭代器遍历LinkedList
     */
    private static void iteratorLinkedListThruIterator(LinkedList<Integer> list) {
        if (list == null)
            return ;

        // 记录开始时间
        long start = System.currentTimeMillis();
        
        for(Iterator iter = list.iterator(); iter.hasNext();)
            iter.next();

        // 记录结束时间
        long end = System.currentTimeMillis();
        long interval = end - start;
        System.out.println("iteratorLinkedListThruIterator:" + interval+" ms");
    }

    /**
     * 通过快速随机访问遍历LinkedList
     */
    private static void iteratorLinkedListThruForeach(LinkedList<Integer> list) {
        if (list == null)
            return ;

        // 记录开始时间
        long start = System.currentTimeMillis();
        
        int size = list.size();
        for (int i=0; i<size; i++) {
            list.get(i);        
        }
        // 记录结束时间
        long end = System.currentTimeMillis();
        long interval = end - start;
        System.out.println("iteratorLinkedListThruForeach:" + interval+" ms");
    }

    /**
     * 通过另外一种for循环来遍历LinkedList
     */
    private static void iteratorThroughFor2(LinkedList<Integer> list) {
        if (list == null)
            return ;

        // 记录开始时间
        long start = System.currentTimeMillis();
        
        for (Integer integ:list) 
            ;

        // 记录结束时间
        long end = System.currentTimeMillis();
        long interval = end - start;
        System.out.println("iteratorThroughFor2:" + interval+" ms");
    }

    /**
     * 通过pollFirst()来遍历LinkedList
     */
    private static void iteratorThroughPollFirst(LinkedList<Integer> list) {
        if (list == null)
            return ;

        // 记录开始时间
        long start = System.currentTimeMillis();
        while(list.pollFirst() != null)
            ;

        // 记录结束时间
        long end = System.currentTimeMillis();
        long interval = end - start;
        System.out.println("iteratorThroughPollFirst:" + interval+" ms");
    }

    /**
     * 通过pollLast()来遍历LinkedList
     */
    private static void iteratorThroughPollLast(LinkedList<Integer> list) {
        if (list == null)
            return ;

        // 记录开始时间
        long start = System.currentTimeMillis();
        while(list.pollLast() != null)
            ;

        // 记录结束时间
        long end = System.currentTimeMillis();
        long interval = end - start;
        System.out.println("iteratorThroughPollLast:" + interval+" ms");
    }

    /**
     * 通过removeFirst()来遍历LinkedList
     */
    private static void iteratorThroughRemoveFirst(LinkedList<Integer> list) {
        if (list == null)
            return ;

        // 记录开始时间
        long start = System.currentTimeMillis();
        try {
            while(list.removeFirst() != null)
                ;
        } catch (NoSuchElementException e) {
        }

        // 记录结束时间
        long end = System.currentTimeMillis();
        long interval = end - start;
        System.out.println("iteratorThroughRemoveFirst:" + interval+" ms");
    }

    /**
     * 通过removeLast()来遍历LinkedList
     */
    private static void iteratorThroughRemoveLast(LinkedList<Integer> list) {
        if (list == null)
            return ;

        // 记录开始时间
        long start = System.currentTimeMillis();
        try {
            while(list.removeLast() != null)
                ;
        } catch (NoSuchElementException e) {
        }

        // 记录结束时间
        long end = System.currentTimeMillis();
        long interval = end - start;
        System.out.println("iteratorThroughRemoveLast:" + interval+" ms");
    }

}

执行结果:

iteratorLinkedListThruIterator:8 ms
iteratorLinkedListThruForeach:3724 ms
iteratorThroughFor2:5 ms
iteratorThroughPollFirst:8 ms
iteratorThroughPollLast:6 ms
iteratorThroughRemoveFirst:2 ms
iteratorThroughRemoveLast:2 ms

由此可见,遍历LinkedList时,使用removeFist()或removeLast()效率最高。但用它们遍历时,会删除原始数据;若单纯只读取,而不删除,应该使用第3种遍历方式。
无论如何,千万不要通过随机访问去遍历LinkedList!

第5部分 LinkedList示例

下面通过一个示例来学习如何使用LinkedList的常用API

import java.util.List;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.NoSuchElementException;

/*
 * @desc LinkedList测试程序。
 *
 * @author skywang
 * @email  [email protected]
 */
public class LinkedListTest {
    public static void main(String[] args) {
        // 测试LinkedList的API
        testLinkedListAPIs() ;

        // 将LinkedList当作 LIFO(后进先出)的堆栈
        useLinkedListAsLIFO();

        // 将LinkedList当作 FIFO(先进先出)的队列
        useLinkedListAsFIFO();
    }
    
    /*
     * 测试LinkedList中部分API
     */
    private static void testLinkedListAPIs() {
        String val = null;
        //LinkedList llist;
        //llist.offer("10");
        // 新建一个LinkedList
        LinkedList llist = new LinkedList();
        //---- 添加操作 ----
        // 依次添加1,2,3
        llist.add("1");
        llist.add("2");
        llist.add("3");

        // 将“4”添加到第一个位置
        llist.add(1, "4");
        

        System.out.println("\nTest \"addFirst(), removeFirst(), getFirst()\"");
        // (01) 将“10”添加到第一个位置。  失败的话,抛出异常!
        llist.addFirst("10");
        System.out.println("llist:"+llist);
        // (02) 将第一个元素删除。        失败的话,抛出异常!
        System.out.println("llist.removeFirst():"+llist.removeFirst());
        System.out.println("llist:"+llist);
        // (03) 获取第一个元素。          失败的话,抛出异常!
        System.out.println("llist.getFirst():"+llist.getFirst());


        System.out.println("\nTest \"offerFirst(), pollFirst(), peekFirst()\"");
        // (01) 将“10”添加到第一个位置。  返回true。
        llist.offerFirst("10");
        System.out.println("llist:"+llist);
        // (02) 将第一个元素删除。        失败的话,返回null。
        System.out.println("llist.pollFirst():"+llist.pollFirst());
        System.out.println("llist:"+llist);
        // (03) 获取第一个元素。          失败的话,返回null。
        System.out.println("llist.peekFirst():"+llist.peekFirst());
    

        System.out.println("\nTest \"addLast(), removeLast(), getLast()\"");
        // (01) 将“20”添加到最后一个位置。  失败的话,抛出异常!
        llist.addLast("20");
        System.out.println("llist:"+llist);
        // (02) 将最后一个元素删除。        失败的话,抛出异常!
        System.out.println("llist.removeLast():"+llist.removeLast());
        System.out.println("llist:"+llist);
        // (03) 获取最后一个元素。          失败的话,抛出异常!
        System.out.println("llist.getLast():"+llist.getLast());


        System.out.println("\nTest \"offerLast(), pollLast(), peekLast()\"");
        // (01) 将“20”添加到第一个位置。  返回true。
        llist.offerLast("20");
        System.out.println("llist:"+llist);
        // (02) 将第一个元素删除。        失败的话,返回null。
        System.out.println("llist.pollLast():"+llist.pollLast());
        System.out.println("llist:"+llist);
        // (03) 获取第一个元素。          失败的话,返回null。
        System.out.println("llist.peekLast():"+llist.peekLast());

         

        // 将第3个元素设置300。不建议在LinkedList中使用此操作,因为效率低!
        llist.set(2, "300");
        // 获取第3个元素。不建议在LinkedList中使用此操作,因为效率低!
        System.out.println("\nget(3):"+llist.get(2));


        // ---- toArray(T[] a) ----
        // 将LinkedList转行为数组
        String[] arr = (String[])llist.toArray(new String[0]);
        for (String str:arr) 
            System.out.println("str:"+str);

        // 输出大小
        System.out.println("size:"+llist.size());
        // 清空LinkedList
        llist.clear();
        // 判断LinkedList是否为空
        System.out.println("isEmpty():"+llist.isEmpty()+"\n");

    }

    /**
     * 将LinkedList当作 LIFO(后进先出)的堆栈
     */
    private static void useLinkedListAsLIFO() {
        System.out.println("\nuseLinkedListAsLIFO");
        // 新建一个LinkedList
        LinkedList stack = new LinkedList();

        // 将1,2,3,4添加到堆栈中
        stack.push("1");
        stack.push("2");
        stack.push("3");
        stack.push("4");
        // 打印“栈”
        System.out.println("stack:"+stack);

        // 删除“栈顶元素”
        System.out.println("stack.pop():"+stack.pop());
        
        // 取出“栈顶元素”
        System.out.println("stack.peek():"+stack.peek());

        // 打印“栈”
        System.out.println("stack:"+stack);
    }

    /**
     * 将LinkedList当作 FIFO(先进先出)的队列
     */
    private static void useLinkedListAsFIFO() {
        System.out.println("\nuseLinkedListAsFIFO");
        // 新建一个LinkedList
        LinkedList queue = new LinkedList();

        // 将10,20,30,40添加到队列。每次都是插入到末尾
        queue.add("10");
        queue.add("20");
        queue.add("30");
        queue.add("40");
        // 打印“队列”
        System.out.println("queue:"+queue);

        // 删除(队列的第一个元素)
        System.out.println("queue.remove():"+queue.remove());
    
        // 读取(队列的第一个元素)
        System.out.println("queue.element():"+queue.element());

        // 打印“队列”
        System.out.println("queue:"+queue);
    }
}

运行结果:

Test "addFirst(), removeFirst(), getFirst()"
llist:[10, 1, 4, 2, 3]
llist.removeFirst():10
llist:[1, 4, 2, 3]
llist.getFirst():1

Test "offerFirst(), pollFirst(), peekFirst()"
llist:[10, 1, 4, 2, 3]
llist.pollFirst():10
llist:[1, 4, 2, 3]
llist.peekFirst():1

Test "addLast(), removeLast(), getLast()"
llist:[1, 4, 2, 3, 20]
llist.removeLast():20
llist:[1, 4, 2, 3]
llist.getLast():3

Test "offerLast(), pollLast(), peekLast()"
llist:[1, 4, 2, 3, 20]
llist.pollLast():20
llist:[1, 4, 2, 3]
llist.peekLast():3

get(3):300
str:1
str:4
str:300
str:3
size:4
isEmpty():true


useLinkedListAsLIFO
stack:[4, 3, 2, 1]
stack.pop():4
stack.peek():3
stack:[3, 2, 1]

useLinkedListAsFIFO
queue:[10, 20, 30, 40]
queue.remove():10
queue.element():20
queue:[20, 30, 40]

上一篇: Java 集合系列04之 fail-fast总结(通过ArrayList来说明fail-fast的原理、解决办法)

你可能感兴趣的:(java,集合)