【模拟电子技术Analog Electronics Technology 17】—— 放大电路的频率响应1

写在前面:本博文主要是《模拟电子技术》第四章的开篇部分,主要介绍了两种模型:高通电路和低通电路,并且分别对他们的幅频特性和相频特性进行了详细的分析,最后归纳了信号作用在不同频段下的一些应用细节

文章目录

  • 1.高通电路
  • 2.低通电路

在本章里面,我们将要研究的,是频率f对电路放大倍数的影响
我们看f = 1 T = ω 2 Π \frac{1}{T} = \frac{ω}{2Π} T1=2Πω, f越大,ω越大,C的容抗 1 j ω C \frac{1}{jωC} jωC1就越大,进而影响电路的放大倍数

1.高通电路

所谓高通电路,就是输入信号的频率越高(C的容抗大,R的分压多),输出电压越接近输入电压
我们先来看看高通电路的模型:

【模拟电子技术Analog Electronics Technology 17】—— 放大电路的频率响应1_第1张图片

电容C的容抗为: 1 j ω C \frac{1}{jωC} jωC1,那么该电路的放大倍数 A u A_u Au可以表述成: A u = u 0 u i = R R + 1 j ω C = 1 1 + 1 j ω C R A_u = \frac{u_0}{u_i} = \frac{R}{R + \frac{1}{jωC}} = \frac{1}{1 + \frac{1}{jωCR}} Au=uiu0=R+jωC1R=1+jωCR11
那么,下面我们令: f L = 1 2 Π R C f_L = \frac{1}{2ΠRC} fL=2ΠRC1,而我们有知道: f = 1 T = ω 2 Π f = \frac{1}{T} = \frac{ω}{2Π} f=T1=2Πω
那么,上式就变为了: A u = 1 1 + f L j f = 1 1 − j f L f A_u = \frac{1}{1 + \frac{f_L}{jf}} = \frac{1}{1 - j\frac{f_L}{f}} Au=1+jffL1=1jffL1
下面,我们来考虑 A u A_u Au幅频特性相频特性
{ 幅 频 : ∣ A u ∣ = f f L 1 + ( f f L ) 2 相 频 : φ = 90 ° − a r c t a n f f L \begin{cases} \footnotesize{幅频}:|A_u| = \frac{\frac{f}{f_L}}{\sqrt{1 + (\frac{f}{f_L})^2}}\\ \footnotesize{相频}:φ = 90° - arctan \frac{f}{f_L}\\ \end{cases} :Au=1+(fLf)2 fLf:φ=90°arctanfLf

这里,我们需要补充一个知识:就是我们喜欢用dB(分贝)来作为放大器增益的单位,用“分贝”做单位时,放大 倍数就称之为增益,有下面的公式转换:
AV(dB)=20lg V o V i \frac{Vo}{Vi} ViVo,Ap(dB)=10lg P o P i \frac{Po}{Pi} PiPo
贝定义时电压(电流)增益和功率增益的公式不同

下面,我们通过f和 f L f_L fL的大小关系,来看看幅频:

  1. 当f << f L f_L fL时:| A u A_u Au| = f f L \frac{f}{f_L} fLf,用分贝做单位则变为:20lg f f L d B \frac{f}{f_L}dB fLfdB
  2. 当f = f L f_L fL时,| A u A_u Au| = 2 2 \frac{\sqrt{2}}{2} 22 ≈ 0.707,用分贝做单位则变为:20lg0.707 = -3dB
  3. 当f >> f L f_L fL时,| A u A_u Au| = 0,用分贝做单位仍然为0

不知道细心的大家有没有发现:在第一个情况里面:20lg f f L \frac{f}{f_L} fLf,它表示:f每增加 f L f_L fL的十倍dB,| A u A_u Au|就会增加20dB,即:20dB/dec
那么,下面我们以横轴为f的对数轴,做出高通电路的特性曲线:

【模拟电子技术Analog Electronics Technology 17】—— 放大电路的频率响应1_第2张图片

f L f_L fL ~ 10 f L 10f_L 10fL段曲线是光滑的, f L f_L fL以下的部分,是一条斜率为20dB/dec的直线

下面,我们来分析相频特性:

  1. 当f << f L f_L fL时:φ = Π 2 \frac{Π}{2} 2Π
  2. 当f = f L f_L fL时,φ = Π 4 \frac{Π}{4} 4Π
  3. 当f >> f L f_L fL时,φ = 0
【模拟电子技术Analog Electronics Technology 17】—— 放大电路的频率响应1_第3张图片

注意:一般我们的分析:>10倍,我们就认为是远大于;<10倍的,我们就认为是远小于

2.低通电路

所谓低通电路:就是信号的频率越低,输出电压越接近输入电压

【模拟电子技术Analog Electronics Technology 17】—— 放大电路的频率响应1_第4张图片

分析方法和上面几乎一样:
A u = 1 j ω C R + 1 j ω C = 1 1 + j ω C A_u = \frac{\frac{1}{jωC}}{R + \frac{1}{jωC}} = \frac{1}{1 + jωC} Au=R+jωC1jωC1=1+jωC1
同样地,我们令 f H = 1 2 Π R C f_H = \frac{1}{2ΠRC} fH=2ΠRC1,则 A u = 1 1 + j f f H A_u = \frac{1}{1 + j\frac{f}{f_H}} Au=1+jfHf1
下面,我们依然是分析幅频和相频:
{ 幅 频 : ∣ A u ∣ = 1 1 + ( f f H ) 2 φ = − a r c t a n ( f f H ) \begin{cases} \footnotesize{幅频}:|A_u| = \frac{1}{\sqrt{1 + (\frac{f}{f_H})^2}}\\ φ = -arctan(\frac{f}{f_H}) \end{cases} :Au=1+(fHf)2 1φ=arctan(fHf)

  1. 当f << f L f_L fL时:| A u A_u Au| = 1,使用分贝为单位即0dB;
  2. 当f = f L f_L fL时,| A u A_u Au| = 2 2 \frac{\sqrt{2}}{2} 22 ,使用分贝为单位即-3dB;
  3. 当f >> f L f_L fL时,| A u A_u Au| = f H f \frac{f_H}{f} ffH,用分贝为单位即:20lg f H f \frac{f_H}{f} ffH

同样的,大家发现:20lg f H f \frac{f_H}{f} ffH表示 f f f每增加 f H f_H fH的十倍,| A u A_u Au|就减小20dB
下面,我们来画以下低通电路的相频特性曲线(我们打算和高通电路的画到一起):

【模拟电子技术Analog Electronics Technology 17】—— 放大电路的频率响应1_第5张图片

下面接着分析相频:

  1. 当f << f L f_L fL时:φ = 0;
  2. 当f = f L f_L fL时,φ = − Π 4 -\frac{Π}{4} 4Π
  3. 当f >> f L f_L fL时,φ = − Π 2 -\frac{Π}{2} 2Π

我们也是将低通电路的相频特性曲线和高通的画在一起:

【模拟电子技术Analog Electronics Technology 17】—— 放大电路的频率响应1_第6张图片

下面是课程总结的几个要点:

  1. 高通和低通电路可以模拟放大电路中C对放大倍数 A u A_u Au的影响
  2. 凡是在电路中起分压作用这里的“分压”指的是分输入信号的压)的电容,那么影响的就是信号的低频部分(f小,容抗大,分压多);例如之前我们熟悉的共射放大电路的C1,C2, C e C_e Ce【之前我们在动态等效电路中将C短路,相当于作用在了中频段】
  3. 凡是在电路中起分流作用的,影响的是电路的高频部分(比如晶体管高频等效电路里面的 C Π ’ C_{Π’} CΠ
  4. 电路中有几个电容(低阶电容/高阶电容),那么,最后的 A u A_u Au就是中频段下的 A u m A_um Aum乘上几个(低阶因子/高阶因子),因此,我们特别要重视这两种因子: ( 低 阶 因 子 ) : 1 − j f L f ; ( 高 阶 因 子 ) : 1 + j f f H (低阶因子):1 - j\frac{f_{L}}{f}; (高阶因子):1 + j\frac{f}{f_H} (1jffL;(1+jfHf

在下一篇博文中,我将会记录晶体管的混合Π模型,以及里面一些参数的求解;同时具体到题目看看如何分析电路在全频段的放大倍数的求解

你可能感兴趣的:(#,Analog,Electronic,Technology)