- SpringBoot 整合 Avro 与 Kafka
m0_74823408
面试学习路线阿里巴巴springbootkafkalinq
优质博文:IT-BLOG-CN【需求】:生产者发送数据至kafka序列化使用Avro,消费者通过Avro进行反序列化,并将数据通过MyBatisPlus存入数据库。一、环境介绍【1】ApacheAvro1.8;【2】SpringKafka1.2;【3】SpringBoot1.5;【4】Maven3.5;4.0.0com.codenotfoundspring-kafka-avro0.0.1-SNAP
- 【图像去噪】论文复现:TPAMI 2025!全面提升单图像去噪泛化性!像素级零样本去噪方法Pixel2Pixel的Pytorch源码复现,跑通源码,修改各种报错,框架详解,注释详细!
十小大
pytorch人工智能python深度学习计算机视觉图像处理图像去噪
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通Pixel2Pixel全部源码,包含数据集准备、制作像素库(PixelBank)、训练和推理等,
- 【图像去噪】基础知识之加噪 | 给图像加噪的若干种方式,包括加高斯白噪声(AWGN)、泊松-高斯噪声、模拟真实噪声(SIDD、DND)等
十小大
人工智能计算机视觉深度学习图像处理图像去噪pythonpytorch
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)文章目录前言加高斯噪声(AWGN)在numpy上加在Tensor上加完整代码加其他噪声(模拟真实世界的噪声)加随机散粒噪声和真实噪声(Possion-Gaussian)加SIDD
- [点点搬家]初试mod_perl+apache 之二
promenade
perlapache
[四年前的博客了,学习apache的纯真年代]学习practicalmod_perl中关于apache的配置,章节连接如下http://www.modperlbook.org/html/4-1-1-Configuration-Files.html1,".htaccess"文件,可以看到httpd.conf中有这样的模块AllowOverrideNoneOptionsNoneOrderallow,d
- 解决elementui中aria-hidden报错:Blocked aria-hidden on an element because its descendant retained focus.
T-shmily
vue浏览器报错elementui前端javascript
控制台报错:这个无缘无故的是浏览器的原因,不影响代码但影响美观。可以通过css解决,可以放在入口文件解决办法:/*解决浏览器报错:Blockedaria-hiddenonanelementbecauseitsdescendantretainedfocus*/input[aria-hidden="true"]{display:none!important;}或者添加以下也可以解决.el-radio_
- 【图像去噪】论文复现:真实噪声转高斯噪声,提升高斯噪声训练的模型性能!Learning to Translate Noise的Pytorch源码复现,跑通流程,框架结构和损失函数详解!
十小大
pytorch人工智能python图像去噪图像处理深度学习计算机视觉
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通LearningtoTranslateNoise源码,包含基于BasicSR的训练和测试代码,得
- CFile打开文件模式总结
bengold1979
C++日积月累filemfc优化磁盘
知识和技能需要在平时点点滴滴的过程中不断积累的,所以自己要加强这方面的总结和积聚。下面将总结CFile类打开文件模式的分类及具体说明。CFile::modeCreate直接构建创建一个新文件。如果该文件已经存在,则文件内容自动被清零。CFile::modeNoTruncate该值一般modeCreate组合使用。如果创建的文件已经存在,那么它不会被清零。因而该文件能可靠的打开,或者新建一个文件或者
- 论文阅读笔记——Prediction with Action: Visual Policy Learning via Joint Denoising Process
寻丶幽风
论文阅读笔记论文阅读笔记人工智能
以前的method是输入视频输出视频或者输入视频和action学习action,该方法认为action,video和othercondition具有一定联系,所以一次性对所有的进行jointdenoise。网络结构采用MaskedMulti-headAttention关联不同模态,使用DiT的backbone。
- 【图像去噪】基础知识之BasicSR | BasicSR库的用法详解,包含各部分代码功能详细介绍(全代码注释),自己改进创新需要修改的位置等
十小大
图像去噪imagedenoising图像处理深度学习人工智能pytorchpython
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)文章目录前言1.BasicSR项目结构与开发方法2.dataset3.arch4.model4.1创建模型4.2模型基类4.3图像恢复模型5.utils6.train7.test
- VQ-Diffusion 深度解析与实战指南
晏灵昀Odette
VQ-Diffusion深度解析与实战指南VQ-Diffusion项目地址:https://gitcode.com/gh_mirrors/vqd/VQ-Diffusion1.项目介绍VQ-Diffusion是一个用于文本到图像合成的深度学习模型,基于矢量量化变分自编码器(VQ-VAE)和去噪扩散概率模型(DenoisingDiffusionProbabilisticModel)。该模型通过将DDP
- OpenCV计算摄影学(2)图像去噪函数denoise_TVL1()
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述原始-对偶算法是用于解决特定类型变分问题(即,寻找一个函数以最小化某个泛函)的算法。特别地,图像去噪可以被视为一种变分问题,因此可以使用原始-对偶算法来进行去噪,这正是这里实现的内容。需要注意的是,此实现取自2013年7月的一篇博客文章[194],该文章还包含了(
- nvm配置镜像源
Tirzano
nodejsnpmnodejsnvme
下载地址:https://github.com/coreybutler/nvm-windows/releases由于nvm的install.cmd在window家庭版上不好用,所以只好手动配置环境变量NVM_HOMEnvm安装目录NVM_SYMLINKnodejs链接目录(快捷方式)setting.txtroot:D:\$\nodenode实际安装目录或者说是下载目录arch:64系统64位pro
- LeetCode热题100刷题12
Liwan95
LeetCodeleetcode算法职场和发展
23.合并K个升序链表给你一个链表数组,每个链表都已经按升序排列。请你将所有链表合并到一个升序链表中,返回合并后的链表。与合并两个有序链表类似,但是需要在k个链表节点中找到最小的。考虑使用优先队列。classSolution{classStatusimplementsComparable{intval;ListNodenode;publicStatus(intval,ListNodenode){t
- SpringBoot 整合 Avro 与 Kafka
m0_74823595
面试学习路线阿里巴巴springbootkafkalinq
优质博文:IT-BLOG-CN【需求】:生产者发送数据至kafka序列化使用Avro,消费者通过Avro进行反序列化,并将数据通过MyBatisPlus存入数据库。一、环境介绍【1】ApacheAvro1.8;【2】SpringKafka1.2;【3】SpringBoot1.5;【4】Maven3.5;4.0.0com.codenotfoundspring-kafka-avro0.0.1-SNAP
- 【深度学习基础模型】去噪自编码器 (Denoising Autoencoders, DAE)详细理解并附实现代码。
985小水博一枚呀
深度学习学习笔记深度学习人工智能VAEpython学习autoencoder
【深度学习基础模型】ExtractingandComposingRobustFeatureswithDenoisingAutoencoders【深度学习基础模型】ExtractingandComposingRobustFeatureswithDenoisingAutoencoders文章目录【深度学习基础模型】ExtractingandComposingRobustFeatureswithDeno
- Leetcode 518. Coin Change II
小白菜又菜
Leetcode动态规划(DP)解题报告leetcode算法
ProblemYouaregivenanintegerarraycoinsrepresentingcoinsofdifferentdenominationsandanintegeramountrepresentingatotalamountofmoney.Returnthenumberofcombinationsthatmakeupthatamount.Ifthatamountofmoneycan
- DDPM(Denoising Diffusion Probabilistic Models)的公式推导
AndrewHZ
机器学习人工智能深度学习算法
总结:DDPM通过最小化预测噪声的均方误差,使反向过程逐步去噪生成数据。核心推导在于通过变分推断将KL散度转换为噪声预测问题,大幅简化了训练目标。1.前向扩散过程前向过程通过\(T\)步逐渐向数据\(x_0\)添加高斯噪声,最终得到纯噪声\(x_T\)。每步定义为:\[q(x_t|x_{t-1})=\mathcal{N}\left(x_t;\sqrt{1-\beta_t}x_{t-1},\beta
- 写给前端工程师的-Flutter-详细教程
2401_84544495
程序员前端flutter
=和其他符号的组合:*=、~/=、&=、|=……级联操作符(Cascadenotation…)//想想这样省了多少变量声明querySelect(‘#button’)…text=“Confirm”…classes.add(‘important’)…onClick.listen((e)=>window.alert(‘Confirmed’))甚至可以重写操作符classVector{finalintx
- 基于vue的h5项目之支付宝支付与微信支付
随便的名字
vuevue
一、支付宝h5支付支付宝h5支付操作起来是超级简单的,前端关键代码如下:this.$http.getTradeNo(lastParams).then(res=>{this.$http.doPayAlipay({oid:res.data,//取到的交易订单号url:yourBackUrl//成功后的回调地址}).then(resAlipay=>{//避免时间间隙造成的用户误操作,尽管拿到数据了仍然显
- 开启apache重写模块
TerryWater
apache.htaccess服务器url
1.开启rewrite模块的调用Apache2.x中URL重写,是通过mod_rewrite.so来实现的,在httpd.conf中,我们会发现类似如下的一行,是有关rewrite模块的,模块名是mod_rewrite.so。开启它。2.设置AllowOverride在httpd.conf中将AllowOverrideNone改为AllowOverrideALL3good!改好了,然后再将服务器里
- Deno vs Node.js:性能对比深度解析
桂月二二
node.js
1.引言Deno和Node.js都是基于V8引擎的JavaScript运行时环境,然而它们在架构、模块管理、安全性和性能方面存在显著差异。Deno由Node.js的原始作者RyanDahl开发,旨在解决Node.js设计上的一些问题,比如包管理、安全模型和TypeScript支持。本文将通过对比HTTP服务器性能、模块加载速度、内存占用和冷启动时间,深入分析Deno与Node.js在实际应用中的性
- 如何搭建Hadoop高可用集群
Alcaibur
hadoop大数据java
一、集群配置图在搭建集群之前,我们要考虑好集群中各个机器的配置。这里以四台机器为例,配置图如下:集群配置图ant151ant152ant153ant154NameNodeNameNodeDataNodeDataNodeDataNodeDataNodeNodeManagerNodeManagerNodeManagerNodeManagerResourceManagerResourceManagerJ
- Diffusion--人工智能领域的革命性技术
油泼辣子多加
专业名词解释人工智能
在人工智能领域,“diffusion”一词通常指的是“扩散模型”(DiffusionModels),其全称为“DenoisingDiffusionProbabilisticModels”(DDPMs)。扩散模型是一类生成式模型,它通过逐步去噪的方式,从随机噪声中生成高质量的数据,近年来在图像、音频、视频等多个领域取得了显著进展。1.发展历史扩散模型的概念源于物理学中的扩散过程,即粒子在介质中的随机
- node笔记_koa框架的路由
yma16
JavaScript专栏nodejs专栏笔记javascriptnode.js前端
文章目录⭐前言⭐koa原生路由写法⭐引入koa-router安装koa-router动态读取路径文件作为路由⭐结束⭐前言大家好,我是yma16,本文介绍koa框架的路由。往期文章node_windows环境变量配置node_npm发布包linux_配置nodenode_nvm安装配置node笔记_http服务搭建(渲染html、json)node笔记_读文件node笔记_写文件
- 类Node.js开源项目(最后一个鲜为人知)
liulun
node.jsc++
Node.js(https://nodejs.org/)Node.js基于V8和libuv创建,跨平台,生态丰富,大家都很熟悉,我就少说两句。Deno(https://deno.com/)Deno的创建者,就是Node.js的创建者:RyanDahl。它之所以离开Node,创建Deno主要是因为以下几个原因:历史包袱问题:比如:CommonJS和ESModulesnpm包管理机制与node_mod
- CT-Mamba:一种用于低剂量CT降噪的混合卷积状态空间模型 论文解读
ZcZc__1
深度学习人工智能图像处理
论文:CT-Mamba:AHybridConvolutionalStateSpaceModelforLow-DoseCTDenoising代码:zy2219105/CT-Mamba,作者称将会在论文正式发表后提供。本文参考了该网站,其对CT-Mamba提供了更详细的描述:https://www.aimodels.fyi/papers/arxiv/ct-mamba-hybrid-convolutio
- 树的存储结构&树和森林的遍历
于冬恋
java算法数据结构
树的存储结构(1)双亲表示法(顺序存储)每个结点中保存指向双亲的“指针”#definemaxsize100//树中最多结点数typedefstruct{//树中结点定义intdata;//数据元素intparent;//双亲位置域}ptnode;typedefstruct{//数的类型定义ptnodenodes[maxsize];//双亲表示intn;//结点数}ptree;增加新元素只需保存该结
- [论文精读]Understanding Diffusion Models: A Unified Perspective
0x211
论文精读数学建模
发布链接:http://arxiv.org/abs/2208.11970文章详细讨论了扩散模型(DiffusionModels)作为一种生成模型的工作原理,并从多个角度解释其背后的数学机制。阅读原因:实验需要理解SD的数学建模过程数学层面更好的解释:diffusionmodel(一):DDPM技术小结(denoisingdiffusionprobabilistic)|莫叶何竹1.扩散模型简介扩散模
- 效率提升70%,迁移时间减半!Denodo平台破解数据编织部署5大难题
Denodo
大数据数据库人工智能数据分析数据仓库数据编织数据库架构
在如今数据驱动的时代,数据编织已逐步成为企业数据管理的关键技术。无论是每天处理数百次查询的小规模部署,还是涉及数百名开发人员、数千次查询并且需要同时监控多个环境的大规模部署,管理数据编织部署都面临着一系列挑战。本文将深度解析如何利用Denodo平台的强大功能,帮助企业高效应对这些挑战,并确保数据编织部署的顺利实施。一、数据编织部署的5大常见挑战多团队协作冲突在大型项目中,不同开发团队可能同时修改相
- 成功编译和运行roslaunch qbo_webi qbo_webi.launch(解决qbo_object_recognition之后的其他问题)
皮熊
ROS框架opencvqborobot
折腾一天的问题,SurfFeatureDetectortype-specifier问题解决了。需要在cv.h中添加includenonfree/features2d.hpp。fromposter.encodeimportmultipart_encodeImportError:Nomodulenamedposter.encodesudoapt-getinstallpython-postersudoa
- jsonp 常用util方法
hw1287789687
jsonpjsonp常用方法jsonp callback
jsonp 常用java方法
(1)以jsonp的形式返回:函数名(json字符串)
/***
* 用于jsonp调用
* @param map : 用于构造json数据
* @param callback : 回调的javascript方法名
* @param filters : <code>SimpleBeanPropertyFilter theFilt
- 多线程场景
alafqq
多线程
0
能不能简单描述一下你在java web开发中需要用到多线程编程的场景?0
对多线程有些了解,但是不太清楚具体的应用场景,能简单说一下你遇到的多线程编程的场景吗?
Java多线程
2012年11月23日 15:41 Young9007 Young9007
4
0 0 4
Comment添加评论关注(2)
3个答案 按时间排序 按投票排序
0
0
最典型的如:
1、
- Maven学习——修改Maven的本地仓库路径
Kai_Ge
maven
安装Maven后我们会在用户目录下发现.m2 文件夹。默认情况下,该文件夹下放置了Maven本地仓库.m2/repository。所有的Maven构件(artifact)都被存储到该仓库中,以方便重用。但是windows用户的操作系统都安装在C盘,把Maven仓库放到C盘是很危险的,为此我们需要修改Maven的本地仓库路径。
- placeholder的浏览器兼容
120153216
placeholder
【前言】
自从html5引入placeholder后,问题就来了,
不支持html5的浏览器也先有这样的效果,
各种兼容,之前考虑,今天测试人员逮住不放,
想了个解决办法,看样子还行,记录一下。
【原理】
不使用placeholder,而是模拟placeholder的效果,
大概就是用focus和focusout效果。
【代码】
<scrip
- debian_用iso文件创建本地apt源
2002wmj
Debian
1.将N个debian-506-amd64-DVD-N.iso存放于本地或其他媒介内,本例是放在本机/iso/目录下
2.创建N个挂载点目录
如下:
debian:~#mkdir –r /media/dvd1
debian:~#mkdir –r /media/dvd2
debian:~#mkdir –r /media/dvd3
….
debian:~#mkdir –r /media
- SQLSERVER耗时最长的SQL
357029540
SQL Server
对于DBA来说,经常要知道存储过程的某些信息:
1. 执行了多少次
2. 执行的执行计划如何
3. 执行的平均读写如何
4. 执行平均需要多少时间
列名 &
- com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil
7454103
eclipse
今天eclipse突然报了com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil 错误,并且工程文件打不开了,在网上找了一下资料,然后按照方法操作了一遍,好了,解决方法如下:
错误提示信息:
An error has occurred.See error log for more details.
Reason:
com/genuitec/
- 用正则删除文本中的html标签
adminjun
javahtml正则表达式去掉html标签
使用文本编辑器录入文章存入数据中的文本是HTML标签格式,由于业务需要对HTML标签进行去除只保留纯净的文本内容,于是乎Java实现自动过滤。
如下:
public static String Html2Text(String inputString) {
String htmlStr = inputString; // 含html标签的字符串
String textSt
- 嵌入式系统设计中常用总线和接口
aijuans
linux 基础
嵌入式系统设计中常用总线和接口
任何一个微处理器都要与一定数量的部件和外围设备连接,但如果将各部件和每一种外围设备都分别用一组线路与CPU直接连接,那么连线
- Java函数调用方式——按值传递
ayaoxinchao
java按值传递对象基础数据类型
Java使用按值传递的函数调用方式,这往往使我感到迷惑。因为在基础数据类型和对象的传递上,我就会纠结于到底是按值传递,还是按引用传递。其实经过学习,Java在任何地方,都一直发挥着按值传递的本色。
首先,让我们看一看基础数据类型是如何按值传递的。
public static void main(String[] args) {
int a = 2;
- ios音量线性下降
bewithme
ios音量
直接上代码吧
//second 几秒内下降为0
- (void)reduceVolume:(int)second {
KGVoicePlayer *player = [KGVoicePlayer defaultPlayer];
if (!_flag) {
_tempVolume = player.volume;
- 与其怨它不如爱它
bijian1013
选择理想职业规划
抱怨工作是年轻人的常态,但爱工作才是积极的心态,与其怨它不如爱它。
一般来说,在公司干了一两年后,不少年轻人容易产生怨言,除了具体的埋怨公司“扭门”,埋怨上司无能以外,也有许多人是因为根本不爱自已的那份工作,工作完全成了谋生的手段,跟自已的性格、专业、爱好都相差甚远。
- 一边时间不够用一边浪费时间
bingyingao
工作时间浪费
一方面感觉时间严重不够用,另一方面又在不停的浪费时间。
每一个周末,晚上熬夜看电影到凌晨一点,早上起不来一直睡到10点钟,10点钟起床,吃饭后玩手机到下午一点。
精神还是很差,下午像一直野鬼在城市里晃荡。
为何不尝试晚上10点钟就睡,早上7点就起,时间完全是一样的,把看电影的时间换到早上,精神好,气色好,一天好状态。
控制让自己周末早睡早起,你就成功了一半。
有多少个工作
- 【Scala八】Scala核心二:隐式转换
bit1129
scala
Implicits work like this: if you call a method on a Scala object, and the Scala compiler does not see a definition for that method in the class definition for that object, the compiler will try to con
- sudoku slover in Haskell (2)
bookjovi
haskellsudoku
继续精简haskell版的sudoku程序,稍微改了一下,这次用了8行,同时性能也提高了很多,对每个空格的所有解不是通过尝试算出来的,而是直接得出。
board = [0,3,4,1,7,0,5,0,0,
0,6,0,0,0,8,3,0,1,
7,0,0,3,0,0,0,0,6,
5,0,0,6,4,0,8,0,7,
- Java-Collections Framework学习与总结-HashSet和LinkedHashSet
BrokenDreams
linkedhashset
本篇总结一下两个常用的集合类HashSet和LinkedHashSet。
它们都实现了相同接口java.util.Set。Set表示一种元素无序且不可重复的集合;之前总结过的java.util.List表示一种元素可重复且有序
- 读《研磨设计模式》-代码笔记-备忘录模式-Memento
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
/*
* 备忘录模式的功能是,在不破坏封装性的前提下,捕获一个对象的内部状态,并在对象之外保存这个状态,为以后的状态恢复作“备忘”
- 《RAW格式照片处理专业技法》笔记
cherishLC
PS
注意,这不是教程!仅记录楼主之前不太了解的
一、色彩(空间)管理
作者建议采用ProRGB(色域最广),但camera raw中设为ProRGB,而PS中则在ProRGB的基础上,将gamma值设为了1.8(更符合人眼)
注意:bridge、camera raw怎么设置显示、输出的颜色都是正确的(会读取文件内的颜色配置文件),但用PS输出jpg文件时,必须先用Edit->conv
- 使用 Git 下载 Spring 源码 编译 for Eclipse
crabdave
eclipse
使用 Git 下载 Spring 源码 编译 for Eclipse
1、安装gradle,下载 http://www.gradle.org/downloads
配置环境变量GRADLE_HOME,配置PATH %GRADLE_HOME%/bin,cmd,gradle -v
2、spring4 用jdk8 下载 https://jdk8.java.
- mysql连接拒绝问题
daizj
mysql登录权限
mysql中在其它机器连接mysql服务器时报错问题汇总
一、[running]
[email protected]:~$mysql -uroot -h 192.168.9.108 -p //带-p参数,在下一步进行密码输入
Enter password: //无字符串输入
ERROR 1045 (28000): Access
- Google Chrome 为何打压 H.264
dsjt
applehtml5chromeGoogle
Google 今天在 Chromium 官方博客宣布由于 H.264 编解码器并非开放标准,Chrome 将在几个月后正式停止对 H.264 视频解码的支持,全面采用开放的 WebM 和 Theora 格式。
Google 在博客上表示,自从 WebM 视频编解码器推出以后,在性能、厂商支持以及独立性方面已经取得了很大的进步,为了与 Chromium 现有支持的編解码器保持一致,Chrome
- yii 获取控制器名 和方法名
dcj3sjt126com
yiiframework
1. 获取控制器名
在控制器中获取控制器名: $name = $this->getId();
在视图中获取控制器名: $name = Yii::app()->controller->id;
2. 获取动作名
在控制器beforeAction()回调函数中获取动作名: $name =
- Android知识总结(二)
come_for_dream
android
明天要考试了,速速总结如下
1、Activity的启动模式
standard:每次调用Activity的时候都创建一个(可以有多个相同的实例,也允许多个相同Activity叠加。)
singleTop:可以有多个实例,但是不允许多个相同Activity叠加。即,如果Ac
- 高洛峰收徒第二期:寻找未来的“技术大牛” ——折腾一年,奖励20万元
gcq511120594
工作项目管理
高洛峰,兄弟连IT教育合伙人、猿代码创始人、PHP培训第一人、《细说PHP》作者、软件开发工程师、《IT峰播》主创人、PHP讲师的鼻祖!
首期现在的进程刚刚过半,徒弟们真的很棒,人品都没的说,团结互助,学习刻苦,工作认真积极,灵活上进。我几乎会把他们全部留下来,现在已有一多半安排了实际的工作,并取得了很好的成绩。等他们出徒之日,凭他们的能力一定能够拿到高薪,而且我还承诺过一个徒弟,当他拿到大学毕
- linux expect
heipark
expect
1. 创建、编辑文件go.sh
#!/usr/bin/expect
spawn sudo su admin
expect "*password*" { send "13456\r\n" }
interact
2. 设置权限
chmod u+x go.sh 3.
- Spring4.1新特性——静态资源处理增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- idea ubuntuxia 乱码
liyonghui160com
1.首先需要在windows字体目录下或者其它地方找到simsun.ttf 这个 字体文件。
2.在ubuntu 下可以执行下面操作安装该字体:
sudo mkdir /usr/share/fonts/truetype/simsun
sudo cp simsun.ttf /usr/share/fonts/truetype/simsun
fc-cache -f -v
- 改良程序的11技巧
pda158
技巧
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。
让我们看一些基本的编程技巧:
尽量保持方法简短
永远永远不要把同一个变量用于多个不同的
- 300个涵盖IT各方面的免费资源(下)——工作与学习篇
shoothao
创业免费资源学习课程远程工作
工作与生产效率:
A. 背景声音
Noisli:背景噪音与颜色生成器。
Noizio:环境声均衡器。
Defonic:世界上任何的声响都可混合成美丽的旋律。
Designers.mx:设计者为设计者所准备的播放列表。
Coffitivity:这里的声音就像咖啡馆里放的一样。
B. 避免注意力分散
Self Co
- 深入浅出RPC
uule
rpc
深入浅出RPC-浅出篇
深入浅出RPC-深入篇
RPC
Remote Procedure Call Protocol
远程过程调用协议
它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。RPC协议假定某些传输协议的存在,如TCP或UDP,为通信程序之间携带信息数据。在OSI网络通信模型中,RPC跨越了传输层和应用层。RPC使得开发