主机字节序模式有两种,大端数据模式和小端数据模式,在网络编程中应注意这两者的区别,以保证数据处理的正确性;例如网络的数据是以大端数据模式进行交互,而我们的主机大多数以小端模式处理,如果不转换,数据会混乱 参考 ;一般来说,两个主机在网络通信需要经过如下转换过程:主机字节序 —> 网络字节序 -> 主机字节序
大端模式:Big-Endian就是高位字节排放在内存的低地址端,低位字节排放在内存的高地址端
低地址 --------------------> 高地址
高位字节 地位字节
小端模式:Little-Endian就是低位字节排放在内存的低地址端,高位字节排放在内存的高地址端
低地址 --------------------> 高地址
低位字节 高位字节
例如在32位系统中,257转换成二级制为:00000000 00000000 00000001 00000001,其中
00000001 | 00000001
高位字节 低位字节
在go语言中,byte其实是uint8的别名,byte 和 uint8 之间可以直接进行互转。目前只能将0~255范围的int转成byte。因为超出这个范围,go在转换的时候,就会把多出来数据扔掉;如果需要将int32转成byte类型,我们需要一个长度为4的[]byte数组就
大端模式下
func f2() {
var v2 uint32
var b2 [4]byte
v2 = 257
// 将 257转成二进制就是
// | 00000000 | 00000000 | 00000001 | 00000001 |
// | b2[0] | b2[1] | b2[2] | b2[3] | // 这里表示b2数组每个下标里面存放的值
// 这里直接使用将uint32强转成uint8
// | 00000000 0000000 00000001 | 00000001 直接转成uint8后等于 1
// |---这部分go在强转的时候扔掉---|
b2[3] = uint8(v2)
// | 00000000 | 00000000 | 00000001 | 00000001 | 右移8位 转成uint8后等于 1
// 下面是右移后的数据
// | | 00000000 | 00000000 | 00000001 |
b2[2] = uint8(v2 >> 8)
// | 00000000 | 00000000 | 00000001 | 00000001 | 右移16位 转成uint8后等于 0
// 下面是右移后的数据
// | | | 00000000 | 00000000 |
b2[1] = uint8(v2 >> 16)
// | 00000000 | 00000000 | 00000001 | 00000001 | 右移24位 转成uint8后等于 0
// 下面是右移后的数据
// | | | | 00000000 |
b2[0] = uint8(v2 >> 24)
fmt.Printf("%+v\n", b2)
// 所以最终将uint32转成[]byte数组输出为
// [0 0 1 1]
}
小端模式下
小端刚好和大端相反,所以在转成小端模式的时候,只要将[]byte数组的下标首尾对换一下位置就可以了
func f3() {
var v3 uint32
var b3 [4]byte
v3 = 257
// 将 257转成二进制就是
// | 00000000 | 00000000 | 00000001 | 00000001 |
// | b3[0] | b3[1] | b3[2] | b3[3] | // 这里表示b3数组每个下标里面存放的值
// 这里直接使用将uint32l强转成uint8
// | 00000000 0000000 00000001 | 00000001 直接转成uint8后等于 1
// |---这部分go在强转的时候扔掉---|
b3[0] = uint8(v3)
// | 00000000 | 00000000 | 00000001 | 00000001 | 右移8位 转成uint8后等于 1
// 下面是右移后的数据
// | | 00000000 | 00000000 | 00000001 |
b3[1] = uint8(v3 >> 8)
// | 00000000 | 00000000 | 00000001 | 00000001 | 右移16位 转成uint8后等于 0
// 下面是右移后的数据
// | | | 00000000 | 00000000 |
b3[2] = uint8(v3 >> 16)
// | 00000000 | 00000000 | 00000001 | 00000001 | 右移24位 转成uint8后等于 0
// 下面是右移后的数据
// | | | | 00000000 |
b3[3] = uint8(v3 >> 24)
fmt.Printf("%+v\n", b3)
// 所以最终将uint32转成[]byte数组输出为
// [1 1 0 0 ]
}
有了上面的的铺垫,go整型和字节数组之间的转换我们也就知道具体操作了,下面上代码
// int 转大端 []byte
func IntToBytesBigEndian(n int64, bytesLength byte) ([]byte, error) {
switch bytesLength {
case 1:
tmp := int8(n)
bytesBuffer := bytes.NewBuffer([]byte{})
binary.Write(bytesBuffer, binary.BigEndian, &tmp)
return bytesBuffer.Bytes(), nil
case 2:
tmp := int16(n)
bytesBuffer := bytes.NewBuffer([]byte{})
binary.Write(bytesBuffer, binary.BigEndian, &tmp)
return bytesBuffer.Bytes(), nil
case 3:
tmp := int32(n)
bytesBuffer := bytes.NewBuffer([]byte{})
binary.Write(bytesBuffer, binary.BigEndian, &tmp)
return bytesBuffer.Bytes()[1:], nil
case 4:
tmp := int32(n)
bytesBuffer := bytes.NewBuffer([]byte{})
binary.Write(bytesBuffer, binary.BigEndian, &tmp)
return bytesBuffer.Bytes(), nil
case 5:
tmp := n
bytesBuffer := bytes.NewBuffer([]byte{})
binary.Write(bytesBuffer, binary.BigEndian, &tmp)
return bytesBuffer.Bytes()[3:], nil
case 6:
tmp := n
bytesBuffer := bytes.NewBuffer([]byte{})
binary.Write(bytesBuffer, binary.BigEndian, &tmp)
return bytesBuffer.Bytes()[2:], nil
case 7:
tmp := n
bytesBuffer := bytes.NewBuffer([]byte{})
binary.Write(bytesBuffer, binary.BigEndian, &tmp)
return bytesBuffer.Bytes()[1:], nil
case 8:
tmp := n
bytesBuffer := bytes.NewBuffer([]byte{})
binary.Write(bytesBuffer, binary.BigEndian, &tmp)
return bytesBuffer.Bytes(), nil
}
return nil, fmt.Errorf("IntToBytesBigEndian b param is invaild")
}
//int 转小端 []byte
func IntToBytesLittleEndian(n int64, bytesLength byte) ([]byte, error) {
switch bytesLength {
case 1:
tmp := int8(n)
bytesBuffer := bytes.NewBuffer([]byte{})
binary.Write(bytesBuffer, binary.LittleEndian, &tmp)
return bytesBuffer.Bytes(), nil
case 2:
tmp := int16(n)
bytesBuffer := bytes.NewBuffer([]byte{})
binary.Write(bytesBuffer, binary.LittleEndian, &tmp)
return bytesBuffer.Bytes(), nil
case 3:
tmp := int32(n)
bytesBuffer := bytes.NewBuffer([]byte{})
binary.Write(bytesBuffer, binary.LittleEndian, &tmp)
return bytesBuffer.Bytes()[0:3], nil
case 4:
tmp := int32(n)
bytesBuffer := bytes.NewBuffer([]byte{})
binary.Write(bytesBuffer, binary.LittleEndian, &tmp)
return bytesBuffer.Bytes(), nil
case 5:
tmp := n
bytesBuffer := bytes.NewBuffer([]byte{})
binary.Write(bytesBuffer, binary.LittleEndian, &tmp)
return bytesBuffer.Bytes()[0:5], nil
case 6:
tmp := n
bytesBuffer := bytes.NewBuffer([]byte{})
binary.Write(bytesBuffer, binary.LittleEndian, &tmp)
return bytesBuffer.Bytes()[0:6], nil
case 7:
tmp := n
bytesBuffer := bytes.NewBuffer([]byte{})
binary.Write(bytesBuffer, binary.LittleEndian, &tmp)
return bytesBuffer.Bytes()[0:7], nil
case 8:
tmp := n
bytesBuffer := bytes.NewBuffer([]byte{})
binary.Write(bytesBuffer, binary.LittleEndian, &tmp)
return bytesBuffer.Bytes(), nil
}
return nil, fmt.Errorf("IntToBytesLittleEndian b param is invaild")
}
//(大端) []byte 转 uint
func BytesToUIntBigEndian(b []byte) (int, error) {
if len(b) == 3 {
b = append([]byte{0}, b...)
}
bytesBuffer := bytes.NewBuffer(b)
switch len(b) {
case 1:
var tmp uint8
err := binary.Read(bytesBuffer, binary.BigEndian, &tmp)
return int(tmp), err
case 2:
var tmp uint16
err := binary.Read(bytesBuffer, binary.BigEndian, &tmp)
return int(tmp), err
case 4:
var tmp uint32
err := binary.Read(bytesBuffer, binary.BigEndian, &tmp)
return int(tmp), err
default:
return 0, fmt.Errorf("%s", "BytesToInt bytes lenth is invaild!")
}
}
//(大端) []byte 转 int
func BytesToIntBigEndian(b []byte) (int, error) {
if len(b) == 3 {
b = append([]byte{0}, b...)
}
bytesBuffer := bytes.NewBuffer(b)
switch len(b) {
case 1:
var tmp int8
err := binary.Read(bytesBuffer, binary.BigEndian, &tmp)
return int(tmp), err
case 2:
var tmp int16
err := binary.Read(bytesBuffer, binary.BigEndian, &tmp)
return int(tmp), err
case 4:
var tmp int32
err := binary.Read(bytesBuffer, binary.BigEndian, &tmp)
return int(tmp), err
default:
return 0, fmt.Errorf("%s", "BytesToInt bytes lenth is invaild!")
}
}
//(小端) []byte 转 uint
func BytesToUIntLittleEndian(b []byte) (int, error) {
if len(b) == 3 {
b = append([]byte{0}, b...)
}
bytesBuffer := bytes.NewBuffer(b)
switch len(b) {
case 1:
var tmp uint8
err := binary.Read(bytesBuffer, binary.LittleEndian, &tmp)
return int(tmp), err
case 2:
var tmp uint16
err := binary.Read(bytesBuffer, binary.LittleEndian, &tmp)
return int(tmp), err
case 4:
var tmp uint32
err := binary.Read(bytesBuffer, binary.LittleEndian, &tmp)
return int(tmp), err
default:
return 0, fmt.Errorf("%s", "BytesToInt bytes lenth is invaild!")
}
}
// 小端[]byte 转 int
func BytesToIntLittleEndian(b []byte) (int, error) {
if len(b) == 3 {
b = append([]byte{0}, b...)
}
bytesBuffer := bytes.NewBuffer(b)
switch len(b) {
case 1:
var tmp int8
err := binary.Read(bytesBuffer, binary.LittleEndian, &tmp)
return int(tmp), err
case 2:
var tmp int16
err := binary.Read(bytesBuffer, binary.LittleEndian, &tmp)
return int(tmp), err
case 4:
var tmp int32
err := binary.Read(bytesBuffer, binary.LittleEndian, &tmp)
return int(tmp), err
default:
return 0, fmt.Errorf("%s", "BytesToInt bytes lenth is invaild!")
}
}
参考:
https://blog.csdn.net/skh2015java/article/details/80751229
https://www.jb51.net/article/150599.htm