- AR眼镜——软件技术栈的必经之路
Julian.zhou
人机交互未来思考人工智能ar人工智能交互空间计算语言模型
AR眼镜软件技术栈的必经之路:从操作系统到生态构建的深度解析摘要AR眼镜作为下一代人机交互入口,其软件技术栈的成熟度直接决定了用户体验与市场渗透率。本文基于行业最新技术动态与头部企业布局,深度剖析AR眼镜软件行业必须突破的七大技术方向,揭示从底层框架到应用生态的全栈技术储备路径。一、操作系统与底层框架:实时性与轻量化的双重革命AR眼镜软件生态的根基在于操作系统的定制化与优化,需满足三大核心需求:实
- 人工智能革命:技术演进图谱与人类文明重构路径
A达峰绮
人工智能重构经验分享图形绘制数据处理AI
当GPT-4在2023年3月通过注册会计师考试时,其财务分析模块展现的推理能力已超越85%的人类考生。这个标志性事件背后,折射出人工智能正在突破认知型工作的最后防线。我们正在见证的,不仅是技术迭代,更是人类文明范式的根本性转变。一、算力奇点降临:AI基础设施的指数级进化量子计算与神经形态芯片的融合正在重塑算力边界。IBM最新数据显示,其量子体积(QuantumVolume)从2020年的64跃升至
- 深度学习模型性能全景评估与优化指南
niuTaylor
深度学习人工智能
深度学习模型性能全景评估与优化指南一、算力性能指标体系1.核心算力指标对比指标计算方式适用场景硬件限制TOPS(TeraOperationsPerSecond)每秒万亿次整数运算量化模型推理NVIDIAJetsonNano仅支持FP16/FP32TFLOPS(TeraFLoating-pointOPerationsperSecond)TFLOPS=Cores×FLOPs/Cycle×Frequen
- 基于 EMA12 指标结合 iTick 外汇报价 API 、股票报价API、指数报价API的量化策略编写与回测
iTick提供了强大的外汇报价API、股票报价API和指数报价API服务,为量化策略的开发提供了丰富的数据支持。本文将详细介绍如何使用Python结合EMA12指标和iTick的报价API来构建一个简单的量化交易策略,并对该策略进行回测。1.引言在量化交易领域,技术指标是构建交易策略的重要基础。iTick提供了强大的外汇报价API、股票报价API和指数报价API服务,为量化策略的开发提供了丰富的数
- 用Python修改Word文档字体
在数字化办公场景中,Word文档作为主流文件格式承载着大量商务文书与学术资料。传统手动调整字体格式的操作模式存在显著局限性:当面对批量文档处理、动态内容生成或企业级模板维护时,逐一手工修改不仅效率低下,更难以保障格式规范的统一性。通过Python实现文档字体的程序化控制,能够有效构建自动化处理流程,在确保排版精准度的同时,显著提升文档批量化操作能力。本文将介绍如何使用Python修改Word文档段
- 软件研发如何量化管理考核KPI指标
软件工程
明确关键业务目标、量化数据指标、过程管控与反馈、重视协同与激励是软件研发中量化管理考核KPI的主要切入点。其中,过程管控与反馈尤为关键,因为它能帮助团队及时发现进度和质量问题,并快速响应调整策略,让每个阶段的目标与执行更趋于一致。通过持续监控研发过程中各项数据指标,并对出现的偏差进行即时纠偏,可以让团队在激烈的竞争环境中始终保持高效迭代和持续创新的能力,为业务拓展提供源源不断的动力。一、软件研发量
- 【DNN量化工具】QKeras 工具简介
kanhao100
笔记dnn人工智能神经网络
QKeras工具简介QKeras是一个用于量化深度学习模型的Keras扩展库,旨在使深度学习模型的量化(即将模型的浮点权重转换为低精度格式)变得简单而高效。QKeras主要目标是优化模型的存储和推理速度,特别适用于需要在资源受限的设备(如移动设备和嵌入式系统)上运行深度学习模型的场景。QKeras的主要特点量化支持:QKeras提供了对不同类型量化的支持,包括权重量化和激活量化。用户可以根据需求选
- QKeras、Brevitas和QONNX量化工具对比
kanhao100
笔记深度学习边缘计算
QKeras、Brevitas和QONNX量化工具对比一、引言在深度学习模型部署领域,量化技术已成为提升模型执行效率的关键手段。通过将浮点权重转换为低精度表示,量化能显著减小模型体积、降低内存占用并加速推理过程。对于资源受限的设备(如移动设备、嵌入式系统和边缘计算设备),量化技术尤为重要。本文深入对比三款主流量化工具:QKeras、Brevitas和QONNX,从用户实际应用角度剖析它们的技术特点
- 10分钟了解基金基础知识
leo_厉锵
金融栏金融
一、基金的本质股票、债券和基金具有一定的可比性,而银行理财产品较为特殊。(一)股票股票代表一个公司的股份。拥有公司股票就相当于拥有部分公司股份。股票投资收益潜力大,因为公司可能是赚钱机器从而导致股价暴涨;但风险也很高,因为公司可能经营不善致使股价暴跌。(二)债券债券代表一种债权,即借钱给别人。例如国债,可理解为国家向你借钱并打借条,约定偿还时间和利息。债券代表着债券关系。(三)基金股票和债券属于直
- 深入解析 DeepSeek-R1 模型的显存与内存需求
gs80140
基础知识科谱deepseek
DeepSeek-R1系列模型涵盖从轻量级到超大规模的多个版本,适用于不同的应用场景。了解各版本在不同量化精度下的显存和内存需求,有助于选择适合自身硬件配置的模型。模型参数与量化精度的关系模型的参数量决定了其基础大小,而量化精度(如FP16、INT8、INT4)则影响每个参数所占用的存储空间。通过降低量化精度,可以显著减少模型的显存和内存占用,但可能会对模型性能产生一定影响。以下是不同量化精度下,
- DeepLabv3+改进18:在主干网络中添加REP_BLOCK
AICurator
深度学习python机器学习deeplabv3+语义分割
【DeepLabv3+改进专栏!探索语义分割新高度】你是否在为图像分割的精度与效率发愁?本专栏重磅推出:✅独家改进策略:融合注意力机制、轻量化设计与多尺度优化✅即插即用模块:ASPP+升级、解码器PS:订阅专栏提供完整代码论文简介我们提出了一种通用的卷积神经网络(ConvNet)构建模块,可在不增加推理时间成本的情况下提升性能。该模块名为多样化分支块(DBB),通过结合不同尺度和复杂度的多样化分支
- 量化交易api有哪些类型?如何选择适合自己的量化交易api?
股票程序化交易接口
量化交易股票API接口Python股票量化交易区块链量化交易api类型选择数据获取股票量化接口股票API接口
Python股票接口实现查询账户,提交订单,自动交易(1)Python股票程序交易接口查账,提交订单,自动交易(2)股票量化,Python炒股,CSDN交流社区>>>量化交易API的主要类型量化交易依赖大量数据,数据获取型API就显得尤为重要。这种类型的API能够连接到各种数据源,如股票市场数据、期货数据等。它可以为交易者提供实时价格数据、历史数据等。一些API能从各大证券交易所获取股票的最新成交
- 模型部署实战:PyTorch生产化指南
小诸葛IT课堂
pytorch人工智能python
一、为什么要做模型部署?模型部署是将训练好的模型投入实际应用的关键步骤,涉及:模型格式转换(TorchScript/ONNX)性能优化(量化/剪枝)构建API服务移动端集成本章使用ResNet18实现图像分类,并演示完整部署流程。二、模型转换:TorchScript与ONNX1.准备预训练模型importtorchimporttorchvision#加载预训练模型model=torc
- FPGA——DDS原理及代码实现
FPGA——DDS原理及代码实现一、DDS各参数意义如图,一个量化的32点的正弦波,也就是说一个ROM里存了32个这样的数据,每次读出一个数据要1ms,分别读出1,2,3...30,31,32,共32个点,读取完整的正弦波需要1ms*32=32ms的时间该正弦波参数为>周期T=1ms*32=32ms,>频率为f=1/T=1/(1ms*(32/1))在读出一个数据时间不变(1ms)的情况下,想要让读
- 需求池膨胀时如何科学排序优先级
需求分析
需求池膨胀时如何科学排序优先级主要依靠数据驱动、战略对齐、风险评估**。其中数据驱动是关键,通过收集历史数据、用户反馈与市场趋势,对各项需求进行量化评估,帮助企业在需求膨胀时做出精准排序和资源配置。实践表明,数据驱动的决策可使需求响应速度提升约30%,大大优化资源分配效果。一、需求池膨胀现象的背景与挑战、需求池指的是企业内部或市场上积累的各类需求、项目或功能请求。随着企业发展和市场环境变化,需求池
- GGUF量化模型技术解析与DeepSeek-R1-Distill-Llama-8B选型指南
每天三杯咖啡
人工智能
```markdown#【完全指南】GGUF量化技术与DeepSeek-R1模型选型:从入门到部署##什么是模型量化?(小白扫盲版)###1.1量化就像"模型减肥术"-**传统模型**:每个参数用32位浮点数(好比高清无损图片)-**量化模型**:用4-8位整数存储(类似手机压缩照片)-**核心原理**:`FP32→Int8/Int4`的数学映射,保留关键特征###1.2为什么要量化?|对比项|原
- 向量数据库 PieCloudVector 进阶系列丨打造以 LLM 为基础的聊天机器人
本系列前两篇文章深入探讨了PieCloudVector在图片和音频数据上的应用之后,本文将聚焦于文本数据,探索PieCloudVector对于文本数据的向量化处理、存储以及检索,并最终结合LLM打造聊天机器人的全流程。在自然语言处理任务中涉及到大量对文本数据的处理、分析和理解,而向量数据库在其中发挥了重要的作用。本文为《PieCloudVector进阶系列》的第三篇,将为大家介绍如何利用PieCl
- Websoft9 开源多应用平台:培养学生数字化能力的实战工具
开源实践
引言数字化教育转型的核心在于将技术工具与教学场景深度融合,但传统模式常因环境配置复杂、工具链割裂等问题阻碍实践教学效率。Websoft9开源多应用平台以标准化部署、多工具集成、轻量化运维为核心能力,为教育场景提供了一种技术门槛更低、协作效率更高的解决方案。本文基于实际教学需求与技术验证,探讨如何通过该平台构建数字化能力培养体系。一、技术特性与教育场景的适配性开源生态覆盖全技术栈,缩短教学准备周期平
- numpy学习笔记10:arr *= 2向量化操作性能优化
宁宁可可
#机器学习#Python基础与进阶numpy学习笔记
numpy学习笔记10:arr*=2向量化操作性能优化在NumPy中,直接对整个数组进行向量化操作(如arr*=2)的效率远高于显式循环(如foriinrange(len(arr)):arr[i]*=2)。以下是详细的解释:1.性能差异的原理(1)底层实现不同显式循环(错误示范):Python的for循环是解释执行的,每次迭代需要动态解析变量类型、执行函数调用等操作。对每个元素的操作会触发多次Py
- 量化投资中的投资组合风险溢价模型
云策量化
量化投资量化交易量化软件量化炒股QMT量化交易PTrade量化软件量化投资deepseek
推荐阅读:《程序化炒股:如何申请官方交易接口权限?个人账户可以申请吗?》量化投资中的投资组合风险溢价模型在量化投资的世界里,风险和回报总是如影随形。投资者们就像是在大海中航行的船长,既要寻找宝藏,又要避开暗礁。今天,我们就来聊聊量化投资中的一个关键工具——投资组合风险溢价模型,它就像是船长的罗盘,帮助我们在风险和回报之间找到平衡。引言:风险与回报的舞蹈在量化投资中,我们经常听到“风险溢价”这个词。
- python、JavaScript 、JAVA等实例代码演示教你如何免费获取股票数据(实时数据、历史数据、CDMA、KDJ等指标数据)配有股票数据API接口说明文档详解参数说明
蝶澈乐乐
pythonjavascriptjava股票数据接口api开发语言
近一两年来,股票量化分析逐渐受到广泛关注。而作为这一领域的初学者,首先需要面对的挑战就是如何获取全面且准确的股票数据。因为无论是实时交易数据、历史交易记录、财务数据还是基本面信息,这些数据都是我们进行量化分析时不可或缺的宝贵资源。我们的核心任务是从这些数据中挖掘出有价值的信息,为我们的投资策略提供有力的支持。在寻找数据的过程中,我尝试了多种途径,包括自编网易股票页面爬虫、申万行业数据爬虫,以及同花
- glm-4v-9b 踩坑(4-bit量化,bitsandbytes 异常)
phynikesi
pytorchglm-4v-9b踩坑bitsandbytes异常
前言本文只分享了自己在体验glm-4v-9b过程中遇到的问题,没有涉及对模型本身以及更多问题的分析,大家可先看问题描述,再决定是否看下去。实验平台:linux系统,RTXA4000。嫌麻烦的可以直接到文未看结论。问题描述16g显卡难以加载模型bitsandbytes异常,模型无法运行加载问题本人设备有限,引用一下别人完整加载模型的数据,大约18.9g。用16g显卡直接报OOM,用8-bit加载还是
- 纳米尺度仿真软件:Quantum Espresso_(21).并行计算与性能优化
kkchenjj
分子动力学2性能优化模拟仿真分子动力学仿真模拟
并行计算与性能优化在纳米尺度仿真中,计算资源的需求往往非常庞大。为了提高计算效率和缩短计算时间,并行计算和性能优化成为不可或缺的技术手段。QuantumEspresso作为一个开源的量子力学仿真软件,提供了多种并行计算的机制和性能优化的方法。本节将详细介绍如何在QuantumEspresso中实现并行计算和性能优化,以提升仿真任务的效率。并行计算的基本概念并行计算是指同时使用多个计算资源(如多核处
- 纳米尺度仿真软件:Quantum Espresso_(19).输运性质计算
kkchenjj
分子动力学2模拟仿真仿真模拟分子动力学
输运性质计算在纳米尺度仿真软件中,输运性质计算是研究材料和器件中电荷和热能输运的重要工具。QuantumEspresso提供了多种方法来计算输运性质,包括使用非平衡格林函数(NEGF)和传输矩阵方法(TMM)。本节将详细介绍如何使用QuantumEspresso及其相关模块进行输运性质的计算,包括设置计算参数、运行模拟以及分析结果。1.非平衡格林函数(NEGF)方法1.1.原理非平衡格林函数(NE
- 双均线量化策略实战指南:基于 iTick 外汇API、股票API报价源的 Python 实现
算法pythonai开发
在量化交易领域,iTick报价API凭借其强大的多市场覆盖能力,已成为专业交易员的首选数据解决方案。其外汇API支持全球主要货币对(如EURUSD、GBPUSD)的毫秒级行情推送,包含Bid/Ask深度报价和实时波动率数据;股票API则覆盖A股、港股及美股市场,提供Level-2逐笔成交和十档盘口信息。通过统一的RESTful接口,开发者可轻松获取标准化的OHLCV数据,实现外汇、股票等多资产策略
- AI 时代,学习 Java 应如何入手?
琢磨先生David
人工智能java
一、Java的现状:生态繁荣与AI融合的双重机遇在2025年的技术版图中,Java依然稳坐企业级开发的“头把交椅”。根据行业统计,Java在全球企业级应用中的市场份额仍超过65%,尤其在微服务架构、大数据平台和物联网(IoT)领域占据核心地位。随着云原生技术的普及,Java生态正经历新一轮进化:轻量化框架通过无服务器架构优化,启动速度提升300%,内存占用降低50%,使得Java在容器化部署中更具
- Tsfresh + TA-Lib + LightGBM :A 股市场量化投资策略实战入门
船长@Quant
Python金融科技pythontsfreshTA-LibLightGBM量化技术策略开发
Tsfresh+TA-Lib+LightGBM:A股市场量化投资策略实战入门本项目以A股市场为研究对象,通过量化技术对市场数据进行分析,构建量化投资策略,并利用历史数据回测验证策略的有效性。项目旨在为量化技术初学者提供一个系统的学习框架,帮助读者掌握从数据获取到策略评估的全流程操作。文中内容仅限技术学习与代码实践参考,市场存在不确定性,技术分析需谨慎验证,不构成任何投资建议。适合量化新手建立系统认
- 从零开始搭量化系统:那些教程里没说的脏活累活
ZQ917
python量化行情接口level2
去年某天,我对着满屏的均线交叉策略发呆——回测曲线完美得能上教科书的策略,实盘跑了两周亏掉20%。后来才发现,问题出在基础行情延迟了整整5秒。这才明白过来:市面上教人写策略的教程,和真正能跑通的交易系统之间,隔着一整条马里亚纳海沟。今天要聊的,不是怎么设计策略(这种内容已经烂大街了),而是实实在在的工程难题:如何用最低成本把策略变成真金白银的交易。别担心,不需要租机房搞专线,咱们普通散户也能玩
- Dify知识库构建流程及示例
cqbelt
ai笔记AI应用
总体流程1.数据预处理清洗:去除噪声、特殊字符、标准化格式。分词/标记化:拆分文本为单词或子词单元(如使用Tokenizer)。元数据关联:附加来源、时间戳等信息,支持多维度检索。2.文本分块固定长度分块:按字符或Token数切分,简单高效。语义分块:基于句子边界或主题分割(如NLP模型识别段落主旨)。重叠策略:相邻块间部分重叠,避免上下文断裂。3.向量化(Embedding)嵌入模型:调用预训练
- 印度、马来西亚股市实时行情API数据接口推荐
后端
随着金融科技的发展,实时行情数据接口成为金融交易、量化投资和市场分析的重要工具。以下为您推荐几款适合获取印度、马来西亚股市实时行情的API数据接口,涵盖不同需求场景和技术特点。一、首选推荐:PRDS金融财务API接口PRDS金融财务API接口是目前市场上针对印度股市实时行情的高性能解决方案,适合对数据时效性和稳定性要求较高的用户。数据覆盖:提供印度全市场股票及指数的实时行情数据,包括NSE(印度国
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A  
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt