- Hive 与 SparkSQL 的语法差异及性能对比
自然术算
Hivehivehadoop大数据spark
在大数据处理领域,Hive和SparkSQL都是极为重要的工具,它们为大规模数据的存储、查询和分析提供了高效的解决方案。虽然二者都致力于处理结构化数据,并且都采用了类似SQL的语法来方便用户进行操作,但在实际使用中,它们在语法细节和性能表现上存在诸多差异。了解这些差异,对于开发者根据具体业务场景选择合适的工具至关重要。语法差异数据定义语言(DDL)表创建语法Hive:在Hive中创建表时,需要详细
- 【新生必会】30个较难Python脚本,建议收藏。
.Boss.
信息可视化python人工智能算法开发语言机器学习
本篇较难,建议优先学习上篇;20个硬核Python脚本-CSDN博客接上篇文章,对于Pyhon的学习,上篇学习的结束相信大家对于Pyhon有了一定的理解和经验,学习完上篇文章之后再研究研究剩下的30个脚本你将会有所成就!加油!目录21、数据库连接-SQLite22、图像处理-Pillow23、图形界面-Tkinter24、文本生成-Faker25、加密和解密-cryptography26、Sock
- 中国智能汽车行业市场需求趋势与发展战略规划建议报告2022-2028年版
qq_1106715599
postman
中国智能汽车行业市场需求趋势与发展战略规划建议报告2022-2028年版【撰写单位】:鸿晟信合研究院【报告目录】:第1章:智能汽车行业发展综述1.1智能汽车的界定1.1.1智能汽车的概念1.1.2智能汽车结构1.1.3智能汽车的体系架构1.1.4智能汽车核心价值分析1.1.5《国民经济行业分类与代码》中智能汽车行业归属1.2智能汽车的等级划分1.2.1美国标准1.2.2中国标准(1)驾驶自动化等级
- 锂电池剩余寿命预测 | 基于CNN-BiLSTM的锂电池剩余寿命预测研究附Matlab参考代码
默默科研仔
锂电池寿命预测cnnmatlab人工智能
基于CNN-BiLSTM的锂电池剩余寿命预测研究附Matlab参考代码一、引言1.1、研究背景和意义锂电池因其高能量密度和长循环寿命,在移动设备、电动汽车和储能系统等领域得到广泛应用。准确预测锂电池的剩余寿命(RemainingUsefulLife,RUL)对于优化电池使用、维护和管理具有重要意义,可以有效减少运营成本,提高设备的安全性和可靠性。随着锂电池应用领域的扩展,对其性能和寿命的预测需求日
- 蓝桥杯 Python组-神奇闹钟(datetime库)
Aurora_th
蓝桥杯蓝桥杯算法职场和发展pythondatetime
神奇闹钟传送门:0神奇闹钟-蓝桥云课问题描述小蓝发现了一个神奇的闹钟,从纪元时间(1970年11日00:00:00)开始,每经过x分钟,这个闹钟便会触发一次闹铃(纪元时间也会响铃)。这引起了小蓝的兴趣,他想要好好研究下这个闹钟。对于给出的任意一个格式为уууу-MM-ddHH:mm:ss的时间,小蓝想要知道在这个时间点之前(包含这个时间点)的最近的一次闹铃时间是哪个时间?注意,你不必考虑时区问题。
- 自动化立体仓库设计步骤:7步
King's King
自动化运维
导语大家好,我是社长,老K。专注分享智能制造和智能仓储物流等内容。完整版文件和更多学习资料,请球友到知识星球【智能仓储物流技术研习社】自行下载这份文件是关于自动化立体仓库设计步骤的详细指南,其核心内容包括以下几个阶段:资料收集与研究:明确用户目标,收集包括工艺过程、物流要求、物料规格、现场条件、系统功能要求等原始资料。确定主要形式和参数:基于收集的资料,计算设计所需的关键参数,如库区出入库总量、货
- 34个适合机械工程及自动化专业【论文选题】
大数据蟒行探索者
自动化运维
论文选题具有极其重要的意义,它直接关系到论文的质量、价值以及研究的可行性和顺利程度。选题明确了研究的具体领域和核心问题,就像给研究旅程设定了方向和目的地。例如,选择“人工智能在医疗影像诊断中的应用”这一选题,就确定了研究将聚焦于人工智能技术在医疗影像领域的应用问题,研究目标可能是提高影像诊断的准确性、效率等。清晰的方向和目标能让研究者在收集资料、设计研究方法等方面更具针对性,避免研究过程中的盲目性
- 深入解析Quantum-GABP:量子神经网络的实现与应用
m0_57781768
神经网络量子计算人工智能
深入解析Quantum-GABP:量子神经网络的实现与应用引言在现代科技飞速发展的今天,量子计算与神经网络的结合成为了研究热点。量子神经网络(QuantumNeuralNetworks,QNN)凭借其巨大的计算潜力和独特的量子特性,逐渐吸引了研究者的关注。其中,Quantum-GABP(量子广义反向传播算法)作为一种高效的量子神经网络训练算法,展现出极大的应用前景。本文将深入探讨Quantum-G
- 当你简历有一个agent项目如何准备问答
喂喂喂喂位
AgentlangChain手搓AIAgent记录面试准备AIGClangchain人工智能
博主现在即将参加xx大学计算机学院研究生复试,现在梳理一下项目中的细节。以下是我的简历上的项目描述:核心技术与创新点为什么需要Agent?大模型的“幻觉”问题很难在模型本身上彻底解决,需要引入外部知识确保答案的准确性,Agent具有与其所属环境交互以指导action的能力,能够满足这样的需求。大模型的参数无法实时更新,本身也无法与真实世界产生实时连接,在多数场景下难以满足实际需求。部分场景需要私有
- 量子神经网络(Quantum Neural Network):结合量子计算的 AI 新探索
盼达思文体科创
人工智能和深度学习量子计算人工智能神经网络
一、引言在当今科技飞速发展的时代,人工智能(AI)和量子计算成为了两个备受关注的领域。量子神经网络(QuantumNeuralNetwork,QNN)作为这两个领域的交叉点,正吸引着越来越多的研究兴趣。QNN试图将量子计算的强大能力与传统神经网络的学习能力相结合,为解决复杂的人工智能问题提供新的思路和方法。二、量子计算基础(一)量子比特(Qubit)量子比特是量子计算的基本信息单位,与传统的比特不
- Python, Java 开发鱼类养殖大全APP
Geeker-2025
pythonjava
开发一个“鱼类养殖大全APP”是一个非常有意义的项目,特别是对于水产养殖从业者、鱼类爱好者和研究人员来说。该APP可以帮助用户了解鱼类的养殖知识、疾病防治、饲料管理、水质监测等内容,并提供个性化的养殖建议。以下是开发该APP的详细思路和技术实现方案,分别针对Python和Java。---###**功能需求分析**1.**鱼类信息展示**:-提供常见鱼类的基本信息(如名称、图片、生活习性、适宜水温、
- Dropout: 一种减少神经网络过拟合的技术
冰蓝蓝
自然语言处理神经网络人工智能深度学习
在深度学习中,过拟合是一个常见的问题,尤其是在模型复杂度较高或训练数据较少的情况下。过拟合意味着模型在训练数据上表现得很好,但在未见过的数据上表现不佳,即泛化能力差。为了解决这个问题,研究者们提出了多种正则化技术,其中之一就是Dropout。什么是Dropout?Dropout是一种正则化技术,由Hinton和他的学生在2012年提出。它通过在训练过程中随机“丢弃”(即暂时移除)网络中的一些神经元
- 深度学习中的注意力机制:解锁智能模型的新视角
冰蓝蓝
深度学习深度学习人工智能
在人工智能的快速发展中,深度学习模型已经成为了处理复杂数据和任务的主力军。然而,随着数据量的激增和任务的复杂化,传统的深度学习模型面临着效率和性能的双重挑战。在这样的背景下,注意力机制(AttentionMechanism)应运而生,它不仅提升了模型的处理能力,还为深度学习领域带来了新的研究视角。什么是注意力机制?注意力机制是一种受人类视觉注意力启发的技术,它允许模型在处理大量信息时,能够动态地聚
- 自然语言处理领域CCF推荐的A类期刊
冰蓝蓝
自然语言处理人工智能
在自然语言处理(NLP)这一蓬勃发展的领域,研究人员和学者们致力于探索语言的深层含义和应用。中国计算机学会(CCF)推荐的A类期刊和会议是该领域内公认的高质量研究发表平台。这是我在学习时整理的一些顶刊并附上官网地址直达。1.ACL(AnnualMeetingoftheAssociationforComputationalLinguistics)ACL是自然语言处理领域的顶级会议之一,由Associ
- python基于django/flask网上书城系统Django-SpringBoot-php-Node.js-flask
QQ_1963288475
pythondjangoflaskspringbootphplaravelnode.js
目录技术栈介绍具体实现截图系统设计研究方法:设计步骤设计流程核心代码部分展示研究方法详细视频演示试验方案论文大纲源码获取/详细视频演示技术栈介绍Django-SpringBoot-php-Node.js-flask本课题的研究方法和研
- 机器学习中输入输出Tokens的概念详解
爱吃土豆的程序员
机器学习基础机器学习人工智能Tokens
随着深度学习技术的快速发展,大语言模型(LargeLanguageModels,LLMs)已经成为自然语言处理(NLP)领域的一个热点研究方向。这些模型不仅能够生成高质量的文本,还能在多种任务中展现出卓越的表现,比如机器翻译、问答系统、文本摘要等。在大语言模型的工作流程中,Tokens的概念扮演着至关重要的角色。本文将详细介绍大语言模型如何使用Tokens,以及如何计算Tokens的数量。什么是T
- LLM-PowerHouse: 一站式大型语言模型定制训练与推理指南
Nifc666
语言模型人工智能自然语言处理whisperlangchaingpt开源软件
LLM-PowerHouse:解锁大型语言模型的潜力在人工智能和自然语言处理领域,大型语言模型(LargeLanguageModels,LLMs)正在掀起一场革命。随着GPT、BERT等模型的出现,LLMs展现出了惊人的能力,可以执行各种复杂的语言任务。然而,如何有效地训练和使用这些强大的模型仍然是一个挑战。针对这一需求,GitHub上的LLM-PowerHouse项目应运而生,为开发者、研究人员
- 202年充电计划——自学手册 网络安全(黑客技术)
网安康sir
web安全安全网络pythonlinux
基于入门网络安全/黑客打造的:黑客&网络安全入门&进阶学习资源包前言什么是网络安全网络安全可以基于攻击和防御视角来分类,我们经常听到的“红队”、“渗透测试”等就是研究攻击技术,而“蓝队”、“安全运营”、“安全运维”则研究防御技术。如何成为一名黑客很多朋友在学习安全方面都会半路转行,因为不知如何去学,在这里,我将这个整份答案分为黑客(网络安全)入门必备、黑客(网络安全)职业指南、黑客(网络安全)学习
- MultiCodeBench:首个涵盖 12 个特定软件应用领域和 15 种编程语言的代码生成基准测试
数据集
2024-12-25,由中山大学、西安交通大学、重庆大学共同创建的MultiCodeBench,填补了特定应用领域代码生成性能评估的空白,为开发者选择适合的LLM提供了实践洞见。一、研究背景:随着大型语言模型(LLMs)在代码生成任务中展现出卓越性能,越来越多的AI编程助手被集成到实际的软件开发环境中,显著提升了开发效率。然而,现有的代码生成基准测试主要集中在通用场景,对于LLMs在特定应用领域的
- DeepBranchTracer:一种使用多特征学习进行曲线结构重建的通用方法
数据集
2024-02-02,由刘超、赵婷、郑能干一起提出了一种名为DeepBranchTracer的新型方法,是一种高效、通用的曲线结构重建方法,适用于多种2D和3D图像数据集。通过结合图像特征和几何特征,显著提高了重建的准确性和连续性。一、研究背景曲线结构(curvilinearstructures)是图像中常见的几何元素,广泛应用于医学图像中的神经分支和血管,以及遥感图像中的道路等。从图像中重建这些
- python绘制密度散点图
龟速前进
anaconda可视化python
头大,外行人做个图咋这么难,趋势线还没有研究出来怎么加上去,哎importmatplotlib.pyplotaspltfromscipy.statsimportgaussian_kdefrommpl_toolkits.axes_grid1importmake_axes_locatableimportnumpyasnpimportpandasaspdfromdbfreadimportDBFdata=
- Spark任务读取hive表数据导入es
小小小小小小小小小小码农
hiveelasticsearchsparkjava
使用elasticsearch-hadoop将hive表数据导入es,超级简单1.引入pomorg.elasticsearchelasticsearch-hadoop9.0.0-SNAPSHOT2.创建sparkconf//spark参数设置SparkConfsparkConf=newSparkConf();//要写入的索引sparkConf.set("es.resource","");//es集
- Spark sql 中row的用法
闯闯桑
sparksql大数据开发语言
在ApacheSpark中,Row是一个表示一行数据的类。它是SparkSQL中DataFrame或Dataset的基本数据单元。每一行数据都由一个Row对象表示,而Row对象中的每个字段对应数据的一个列。Row的用法Row对象通常用于以下场景:创建数据:当你手动创建数据时,可以使用Row对象来表示每一行数据。访问数据:当你从DataFrame或Dataset中提取数据时,每一行数据都是一个Row
- Spark Sql 简单校验的实现
小小小小小小小小小小码农
sparksqljava
在网上参考了很多资料,都是要依赖Sparksession,这个需要spark环境,非常不友好,jdk版本也不好控制。不使用Sparksession获取上下文,利用spark和antlr的静态方法使用java实现简单的sparksql的语法以及内置函数的校验。1.spark版本3.2.0org.apache.sparkspark-sql_2.123.2.0org.antlrantlr4-runtim
- AI人工智能中的概率论与统计学原理与Python实战:Python实现概率模型
AI天才研究院
AI实战AI大模型企业级应用开发实战大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍随着人工智能技术的不断发展,概率论与统计学在人工智能领域的应用越来越广泛。概率论与统计学是人工智能中的基础知识之一,它们在机器学习、深度学习、自然语言处理等领域都有着重要的作用。本文将介绍概率论与统计学的核心概念、算法原理、具体操作步骤以及Python实现方法,并通过具体代码实例进行详细解释。2.核心概念与联系2.1概率论与统计学的区别概率论是一门数学学科,它研究随机事件发生的可能性。
- 蓝桥杯网络安全春秋赛 Crypto RSA
叁Three
蓝桥杯密码学
蓝桥杯网络安全春秋赛CryptoRSA题目某公司为了保护其重要数据,使用了RSA加密算法。该公司以同一个N为模数,为Alice和Bob分别生成了不同的公钥和与之相应的私钥。Alice和Bob都使用自己的公钥对同一条明文m进行加密,分别得到密文c1和c2。假设你是一名密码安全研究者,你已获取了N值、两个密文和公钥,能否使用RSA的相关知识还原出明文m呢?#!python3.9fromCrypto.U
- 2025年三个月自学手册 网络安全(黑客技术)
网安kk
web安全安全网络网络安全python
基于入门网络安全/黑客打造的:黑客&网络安全入门&进阶学习资源包什么是网络安全网络安全可以基于攻击和防御视角来分类,我们经常听到的“红队”、“渗透测试”等就是研究攻击技术,而“蓝队”、“安全运营”、“安全运维”则研究防御技术。如何成为一名黑客很多朋友在学习安全方面都会半路转行,因为不知如何去学,在这里,我将这个整份答案分为黑客(网络安全)入门必备、黑客(网络安全)职业指南、黑客(网络安全)学习导航
- ST-Align:一个包含430万训练样本,涵盖了15种细粒度多模态数据集
数据集
2025-01-15,由北航大学、合肥工业大学、中科院信息工程研究所和美团等机构联合创建介绍了一种名为LLaVA-ST的多模态大型语言模型。该模型配备了一个名为ST-Align的数据集,专为细粒度时空多模态理解设计。一、研究背景近年来,多模态大型语言模型(MLLMs)在多模态理解方面取得了显著进展,能够基于图像或视频生成对话或描述。然而,对于需要基于语言输入处理视觉坐标的细粒度多模态理解任务,现有
- Collab-Overcooked:专注于多智能体协作的语言模型基准测试平台
数据集
2025-02-27,由北京邮电大学和理想汽车公司联合创建。该平台基于《Overcooked-AI》游戏环境,设计了更具挑战性和实用性的交互任务,目的通过自然语言沟通促进多智能体协作。一、研究背景近年来,基于大型语言模型的智能体系统在复杂任务分解和规划方面展现出巨大潜力,成为自然语言处理领域的研究热点。然而,随着研究的深入,人们发现单个智能体在处理复杂任务时存在局限性,而多智能体系统通过协作能够显
- s1K 数据集:是一个用于提升语言模型推理能力的高质量数据集。
数据集
2025-02-07,由斯坦福大学、华盛顿大学等研究机构创建了s1K数据集,该数据集包含1,000个精心挑选的问题,并配以推理轨迹和答案,为语言模型推理能力的提升提供了重要的数据基础。一、研究背景近年来,语言模型(LMs)在大规模预训练的基础上取得了显著进展,其性能提升主要依赖于训练时计算资源的增加。然而,随着模型规模的不断扩大,训练成本也急剧上升。为了在有限的资源下进一步提升模型性能,研究者们开
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla