两函数切线

若存在过点\((0,0)\)的直线\(l\)与曲线\(f(x)=x^3-3x^2+2x\)\(g(x)=x^2+a\)都相切,求\(a\)的值

解答:

\[f^{'}(x)=3x^2-6x+2 \]

\((0,0)\)是切点时

\[f^{'}(x)=2 \]

又因为过\((0,0)\),所以切线方程是

\[y=2x \]

代入

\[g(x)=x^2+a \]

\[x^2-2x+a=0 \]

相切令\(Δ=0\)解出\(a=1\)

\((0,0)\)不是切点

设切点为\((x_0,y_0)\)

\[k=f^{'}(x_0)=3x_0^2-6x_0+2=\frac{y_0}{x_0}=\frac{x_0^3-3x_0^2+2x_0}{x_0}=x_0^2-3x_0+2 \]

\[3x_0^2-6x_0+2=x_0^2-3x_0+2 \]

\[2x_0^2-3x_0=0 \]

解得\(x_0=\frac{2}{3}\)\(x_0=0\)(舍)

\[f^{'}(x_0)=-\frac{1}{4} \]

代入\(g(x)\)

\[-\frac{1}{4}=(\frac{2}{3})^2+a \]

\(Δ=0\)解出\(a=\frac{1}{64}\)

所以\(a=1\)\(a=\frac{1}{64}\)

你可能感兴趣的:(两函数切线)