- 河南萌新联赛2024第(四)场的个人题解(适合小白)
耳朵听不见deaf
ACM算法
河南萌新联赛2024第(四)场的题目链接文章目录ABCEGIJKLAA题目链接思路: sum=计算原来每个连通块的士兵数量总和的平方。 枚举每个点,若破坏当前点,当前点所在的连通块的计算值,记录ma=没破坏前的计算值-破坏后的计算值,记录最大值涉及的知识:tarjan算法不明白的话,可以看我的第二篇博客LCA算法有用的知识:__int128 占用128字节的整数存储类型,范围为-2127~2
- 洛谷 P3916 图的遍历(tarjan + 缩点 + dfs)
无糖钨龙茶
图论深度优先算法
洛谷P3916图的遍历(tarjan+缩点+dfs)放个传送门这道题其实很多人都选择反向建图,然后dfs一下就过了。但确是一道不错的tarjantarjantarjan+缩点+dfsdfsdfs的练手题————————————————————————————————————图的遍历题目描述给出NNN个点,MMM条边的有向图,对于每个点vvv,求A(v)A(v)A(v)表示从点vvv出发,能到达的编
- 《强连通分量(tarjan算法)》基础概念
文章目录一、算法概述二、算法思路三、伪代码实现1.类定义与数据结构2.主程序示例四、算法解释1.初始化阶段2.DFS遍历与时间戳更新3.强连通分量识别4.示例演示五、复杂度分析一、算法概述定义:Tarjan算法是一种用于在有向图中求解强连通分量(StronglyConnectedComponent,SCC)的高效算法。强连通分量指有向图中任意两顶点互相可达的最大子图。核心思想:基于深度优先搜索(D
- 最小费用最大流算法
Da_秀
CCFCSP题库训练CSP信奥赛知识点讲解算法开发语言数据结构动态规划图论c++
最小费用最大流算法原理问题:网络中有源点(起点)和汇点(终点),每条边有流量上限和单位流量费用。求:从源点到汇点的最大流量在流量最大的前提下,总费用最小核心思想:在找增广路时,选择单位费用之和最小的路径(使用SPFA找最短路)实现步骤建图:使用链式前向星存储(含反向边)正向边:容量cap,费用cost反向边:容量0,费用-cost算法流程:Step1:用SPFA找费用最短路(记录路径和最小流量)S
- bzoj 5168:[HAOI2014]贴海报 题解
Unlimied
分块bzoj---其他------OJ---题解bzojHAOI分块
5168:[HAOI2014]贴海报DescriptionBytetown城市要进行市长竞选,所有的选民可以畅所欲言地对竞选市长的候选人发表言论。为了统一管理,城市委员会为选民准备了一个张贴海报的electoral墙。张贴规则如下:1.electoral墙是一个长度为N个单位的长方形,每个单位记为一个格子;2.所有张贴的海报的高度必须与electoral墙的高度一致的;3.每张海报以“AB”表示,
- python画龙舟_BZOJ4891 TJOI2017龙舟(Polllard-Rho)
weixin_39688750
python画龙舟
对给定模数分解质因数后约分即可。依然常数巨大过不了。#include#include#include#include#include#includeusingnamespacestd;#definelllonglong#defineN10010chargetc(){charc=getchar();while((c'Z')&&(c'z')&&(c''))c=getchar();returnc;}ll
- Dijkstra算法进阶:如何处理负权边问题?
数据结构与算法学习
算法网络服务器ai
Dijkstra算法进阶:如何处理负权边问题?关键词:Dijkstra算法、负权边、最短路径、Bellman-Ford算法、SPFA算法摘要:Dijkstra算法是求解单源最短路径的经典算法,但它有一个“致命短板”——无法处理包含负权边的图。本文将从Dijkstra算法的底层逻辑出发,用“快递员送外卖”的生活案例解释负权边为何会让Dijkstra失效;接着拆解Bellman-Ford、SPFA等能
- LCA-Tarjan
hello_mark_
算法数据结构
1171.距离给出nn个点的一棵树,多次询问两点之间的最短距离。注意:边是无向的。所有节点的编号是1,2,…,n1,2,…,n。输入格式第一行为两个整数nn和mm。nn表示点数,mm表示询问次数;下来n−1n−1行,每行三个整数x,y,kx,y,k,表示点xx和点yy之间存在一条边长度为kk;再接下来mm行,每行两个整数x,yx,y,表示询问点xx到点yy的最短距离。树中结点编号从11到nn。输出
- 校园网--tarjan求缩点的两个经典问题
泛舟起晶浪
算法c++图论
1.入度为0点通知全部2.DAG变SCC,别忘了特判称环的情况P2746[USACO5.3]校园网NetworkofSchools-洛谷#includeusingnamespacestd;#defineN100011typedeflonglongll;typedefpairpii;intn;vectormp[105],p[105];intcnt,c;intlow[105],dfn[105],sd[
- 网工实验——OSPF配置
鸡哥爱技术
智能路由器网络
网络拓扑图配置1.为每个路由器配置接口(略)(详细见RIP实验)2.配置OSPFAR1[AR1]ospf[AR1-ospf-1]area1[AR1-ospf-1-area-0.0.0.1]network172.16.1.10.0.0.0#精确配置网络,也可以像下面那条命令那样配置[AR1-ospf-1-area-0.0.0.1]network192.168.1.00.0.0.255AR2[AR2]
- 图论---LCA(Tarjan 离线做法)
快乐的小涵
图论算法数据结构
#includeusingnamespacestd;typedefpairpii;constintN=20010,M=2*N;//是无向边,边需要见两边intn,m;vectorg[N];intp[N];//求一下每个点到根节点之间的距离intdist[N];intres[N];//存结果//first存查询的另外一个点是谁//second存查询编号vectorquery[N];intst[N];
- OSPF的拓展配置
古德赖可可
HCIP知识小记网络
OSPF的拓展配置1.OSPF的手工认证1.接口认证intg0/0/0ospfauthentication-modemd51cipher123456//123456:你自己配置的密码cipher:密文展示plain:明文显示2.区域认证----针对区域内的所有接口做接口认证[r2-ospf-1-area-0.0.0.0]authentication-modemd51cipher1234563.虚链
- Bellman-ford算法
可可亚
图论算法图论bellman–fordalgorithm
Bellman-ford算法解决的问题思路模版特定问题解决的问题最短路问题,时间复杂度为O(n∗m)O(n*m)O(n∗m),可以有负权边,一般情况下都是SPFA算法更加优越,一般只有一种情况下必须使用Bellman-ford算法,那就是限制到最小距离的边数k,其他情况下一般SPFA算法更加适用。思路对每条边都进行松弛操作n-1次,一点能实现最短路。松弛:例如一条边a->b,权值为w,那么dist
- Bellman-Ford算法,Bellman-Ford队列优化(SPFA)
hide_on-BUSh
算法数据结构
Bellman-Ford算法能解决负权的问题但不能解决负权回路的问题但是Bellman-Ford可以判断是否可以存在负环,同样的SPFA也可以判断负环的存在。Bellman-Ford主要是将每个点每一次都松弛while(b){b=false;for(inti=1;iq;intspfa(ints,intt){memset(vis,0,sizeof(vis));memset(dis,0x3f,size
- 算法笔记.spfa算法(bellman-ford算法的改进)
xin007hoyo
算法笔记数据结构
题目:(来源于AcWing)给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数。请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出impossible。数据保证不存在负权回路。输入格式第一行包含整数n和m。接下来m行每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。输出格式输出一个整数,表示1号点到n号点的最短距离。如果路径不存在,则输出i
- 信息学奥赛一本通 1504:【例 1】Word Rings | 洛谷 SP2885 WORDRING - Word Rings
君义_noip
信息学奥赛一本通题解洛谷题解信息学奥赛C++图论算法
【题目链接】ybt1504:【例1】WordRings洛谷SP2885WORDRING-WordRings【题目考点】1.图论:SPFA_DFS判断负环SPFA_DFS算法Bellman-Ford算法栈优化,也称SPFA_DFS算法。主要用于寻找图中是否存在负环或正环。以判断负环为例:将dis数组每个元素初值设为0尝试从每个顶点出发调用SPFA_DFS算法。如果访问到还在搜索过程中(在栈内)的顶点
- 【BZOJ】1419 Red is good
weixin_34129696
【算法】期望DP【题解】其实把状态表示出来就是很简单的期望DP。f[i][j]表示i张红牌,j张黑牌的期望。i=0时,f[0][j]=0。j=0时,f[i][0]=i。f[i][j]=max(0,i/(i+j)*(f[i-1][j]+1)+j/(i+j)*(f[i][j-1]-1))。直接使用期望定义式E(X)=Σpi*xi不四舍五入就是在后一位-5。空间限制必须用递推+滚动数组。#include
- 【BZOJ】1419 Red is Good
Pure_W
BZOJ
大意:桌面上有R张红牌和B张黑牌,随机打乱顺序后放在桌面上,开始一张一张地翻牌,翻到红牌得到1美元,黑牌则付出1美元。可以随时停止翻牌,在最优策略下平均能得到多少钱直接期望DPf[i][j]表示开一局i红j黑的游戏的期望收益,然后f[i][j]可以由f[i-1][j]和f[i][j-1]转移要滚动#include#include#definecintconstint&usingnamespaces
- BZOJ 1419: Red is good(期望DP)
AbEver
BZOJ期望&概率DP&记忆化搜索
题目描述权限传送门题解比较水的期望DP,但也让我悟到了一点关于期望的东西。题目描述得不可描述,看起来逼格很高。但平均就是期望,关键是最优策略这点。根据我幼稚的理解,期望是均值没错,但期望之所以叫期望是因为它在预知未来,当前这个状态期望的得分就是作出决策后未来能得到分数的均值。所以或许这就是期望DP的状态要倒过来推的原因吧。考虑f[i][j]为剩下i张红牌j张黑牌的在最优策略下的期望。根据我脚推的式
- 蓝桥杯备战资料从0开始!!!(python B组)(最全面!最贴心!适合小白!蓝桥云课)图论
手可摘星chen.
蓝桥杯python图论
注:你的关注,点赞,评论让我不停更新一、蓝桥杯图论常见题型最短路径问题单源最短路径(Dijkstra算法)多源最短路径(Floyd-Warshall算法)带有负权边的最短路径(Bellman-Ford算法)最小生成树(MST)Kruskal算法(并查集+贪心)Prim算法(优先队列优化)遍历与连通性DFS/BFS求连通块强连通分量(Tarjan算法)网络流与匹配二分图匹配(匈牙利算法)最大流问题(
- 【图论】bellman-ford 算法 + spfa 算法(基于队列优化)单源最短路(code c++)
idiot5liev
图论算法图论bellman–fordalgorithmc++spfa链式前向星
目录&索引一、前言题目二、算法原理bellman-ford、spfa算法关系spfa算法通俗介绍三、程序代码朴素bellman-fordcodec++spfacodec++四、结论一、前言图为点和边的集合边方向->有向无向边边权值->是否有负权边以及边是否成环,对点来说的出入度存图方式邻接矩阵邻接表链式前向星最短路径算法floyd——多源,时间复杂度O(n^3)dijkstra——单源,推荐因为快
- 算法系列——四种最短路算法:Floyd,Dijkstra,Bellman-Ford,SPFA
ITString
经验之谈java算法数据结构
写在前面:好久没有更新博客了,距离上一次更新已经过去了十一个月了,一是因为课业繁重,二是因为这一年中接了不少项目。其实早就想写写算法和数据结构相关的文章了,之前在Coders群里也说过17年要多写写算法和数据结构,奈何计划赶不上变化,实在是没有工夫写。现在到了18年了,最近刚放寒假,数据科学导论实验今天交上了最后一个,总算是有些闲工夫了,准备写些东西却又不知道应该写什么,算法那么多,从哪个写起呢?
- NO.95十六届蓝桥杯备战|图论基础-单源最短路|负环|BF判断负环|SPFA判断负环|邮递员送信|采购特价产品|拉近距离|最短路计数(C++)
ChoSeitaku
蓝桥杯备考蓝桥杯图论c++
P3385【模板】负环-洛谷如果图中存在负环,那么有可能不存在最短路。BF算法判断负环执⾏n轮松弛操作,如果第n轮还存在松弛操作,那么就有负环。#includeusingnamespacestd;constintN=2e3+10,M=3e3+10;intn,m;intpos;structnode{intu,v,w;}e[M*2];intdist[N];boolbf(){//初始化memset(di
- 【模板】缩点
南星啊
算法模板图论算法
洛谷p3387思路:算法:tarjan算法根据题意,我们只要找到一个路径,使得最终权重最大即可,首先,根据题目可知,如果一个点在一个环上,那么我们就将这整个环都选上,题目上允许我们能够重复走,因此,我们可以将环缩成点,将环所称点后,就可以转换成树,从没有父节点的结点开始,我们向下走,每遍历一个子结点,就将子节点更新一次,最终取结点的最大值即可#includeusingnamespacestd;in
- BZOJ 1639: [Usaco2007 Mar]Monthly Expense 月度开支【二分+贪心】
weixin_30367543
1639:[Usaco2007Mar]MonthlyExpense月度开支【题目描述】传送门【题解】二分答案,然后贪心check就可以了。代码如下#includeusingnamespacestd;intn,m,Ans,a[100005];boolcheck(intx){intSum=0,Now=1;for(inti=1;ix)return0;if(Sum+a[i]>1;L>1)if(check(
- BZOJ 1639: [Usaco2007 Mar]Monthly Expense 月度开支
AC_IS_DELIGHTFUL
BZOJsilverUSACO银组题二分答案
1639:[Usaco2007Mar]MonthlyExpense月度开支TimeLimit:5SecMemoryLimit:64MBSubmit:1052Solved:519[Submit][Status][Discuss]DescriptionFarmerJohn是一个令人惊讶的会计学天才,他已经明白了他可能会花光他的钱,这些钱本来是要维持农场每个月的正常运转的。他已经计算了他以后N(1#in
- 图论算法补充--Tarjan求割点(AI梳理版)
sml259(劳改版)
图论算法深度优先
基本概念在无向图中,割点是指去掉该点及与该点相连的所有边后,图的连通分量会增加的点。比如在一个城市交通网络(可看作无向图,节点是地点,边是道路)中,某个关键地点(割点)被封锁,会导致原本连通的区域被分割成多个不相连的部分。Tarjan算法原理Tarjan算法通过深度优先搜索(DFS)遍历无向图,给每个节点引入两个重要属性:dfn[u]:时间戳,记录节点u在DFS过程中被首次访问的次序。low[u]
- 图论学习笔记(4):Bellman-ford算法和SPFA算法
sml259(劳改版)
算法数据库SPFABellman-ford
声明:这里简单聊聊我们Bellman-ford算法的思路,我也查了一些资料来进行辅助了解,我们主要掌握SPFA算法的思现,因为我们Bellman-ford算法的时间复杂度是稳定的O(VE)(其中V是顶点个数,E是边的个数),在大多数算法题目里这个时间复杂度已经很大了(打XCPC应该O(n^2)左右几乎都会卡)。而我们的SPFA算法平均情况下的时间复杂度是O(kE)(k是一个小于2的数),所以在大多
- 数学建模--图论与最短路径
不到w粉不改名
数学建模图论最短路径DijkstraFloyd算法Bellman-FordSPFA
目录图论与最短路径问题最短路径问题定义常用的最短路径算法Dijkstra算法Floyd算法Bellman-Ford算法SPFA算法应用实例结论延伸如何在实际应用中优化Dijkstra算法以提高效率?数据结构优化:边的优化:并行计算:稀疏矩阵和向量运算:代码优化:Floyd算法在处理多源最短路径问题时的具体实现步骤是什么?Bellman-Ford算法如何检测并处理负权边的图中的负环?SPFA算法与B
- (代码随想录)BEllman_ford算法 及其优化 SPFA
cq.gi
算法
代码随想录(知识提炼)Bellman_ford算法用处解决带负权值的单源最短路问题核心思想对所有边进行松弛n-1次操作(n为节点数量),从而求得目标最短路。何为松弛minDist[B]表示到达B节点最小权值,minDist[B]有哪些状态可以推出来?状态一:minDist[A]+value可以推出minDist[B]状态二:minDist[B]本身就有权值(可能是其他边链接的节点B例如节点C,以至
- java解析APK
3213213333332132
javaapklinux解析APK
解析apk有两种方法
1、结合安卓提供apktool工具,用java执行cmd解析命令获取apk信息
2、利用相关jar包里的集成方法解析apk
这里只给出第二种方法,因为第一种方法在linux服务器下会出现不在控制范围之内的结果。
public class ApkUtil
{
/**
* 日志对象
*/
private static Logger
- nginx自定义ip访问N种方法
ronin47
nginx 禁止ip访问
因业务需要,禁止一部分内网访问接口, 由于前端架了F5,直接用deny或allow是不行的,这是因为直接获取的前端F5的地址。
所以开始思考有哪些主案可以实现这样的需求,目前可实施的是三种:
一:把ip段放在redis里,写一段lua
二:利用geo传递变量,写一段
- mysql timestamp类型字段的CURRENT_TIMESTAMP与ON UPDATE CURRENT_TIMESTAMP属性
dcj3sjt126com
mysql
timestamp有两个属性,分别是CURRENT_TIMESTAMP 和ON UPDATE CURRENT_TIMESTAMP两种,使用情况分别如下:
1.
CURRENT_TIMESTAMP
当要向数据库执行insert操作时,如果有个timestamp字段属性设为
CURRENT_TIMESTAMP,则无论这
- struts2+spring+hibernate分页显示
171815164
Hibernate
分页显示一直是web开发中一大烦琐的难题,传统的网页设计只在一个JSP或者ASP页面中书写所有关于数据库操作的代码,那样做分页可能简单一点,但当把网站分层开发后,分页就比较困难了,下面是我做Spring+Hibernate+Struts2项目时设计的分页代码,与大家分享交流。
1、DAO层接口的设计,在MemberDao接口中定义了如下两个方法:
public in
- 构建自己的Wrapper应用
g21121
rap
我们已经了解Wrapper的目录结构,下面可是正式利用Wrapper来包装我们自己的应用,这里假设Wrapper的安装目录为:/usr/local/wrapper。
首先,创建项目应用
&nb
- [简单]工作记录_多线程相关
53873039oycg
多线程
最近遇到多线程的问题,原来使用异步请求多个接口(n*3次请求) 方案一 使用多线程一次返回数据,最开始是使用5个线程,一个线程顺序请求3个接口,超时终止返回 缺点 测试发现必须3个接
- 调试jdk中的源码,查看jdk局部变量
程序员是怎么炼成的
jdk 源码
转自:http://www.douban.com/note/211369821/
学习jdk源码时使用--
学习java最好的办法就是看jdk源代码,面对浩瀚的jdk(光源码就有40M多,比一个大型网站的源码都多)从何入手呢,要是能单步调试跟进到jdk源码里并且能查看其中的局部变量最好了。
可惜的是sun提供的jdk并不能查看运行中的局部变量
- Oracle RAC Failover 详解
aijuans
oracle
Oracle RAC 同时具备HA(High Availiablity) 和LB(LoadBalance). 而其高可用性的基础就是Failover(故障转移). 它指集群中任何一个节点的故障都不会影响用户的使用,连接到故障节点的用户会被自动转移到健康节点,从用户感受而言, 是感觉不到这种切换。
Oracle 10g RAC 的Failover 可以分为3种:
1. Client-Si
- form表单提交数据编码方式及tomcat的接受编码方式
antonyup_2006
JavaScripttomcat浏览器互联网servlet
原帖地址:http://www.iteye.com/topic/266705
form有2中方法把数据提交给服务器,get和post,分别说下吧。
(一)get提交
1.首先说下客户端(浏览器)的form表单用get方法是如何将数据编码后提交给服务器端的吧。
对于get方法来说,都是把数据串联在请求的url后面作为参数,如:http://localhost:
- JS初学者必知的基础
百合不是茶
js函数js入门基础
JavaScript是网页的交互语言,实现网页的各种效果,
JavaScript 是世界上最流行的脚本语言。
JavaScript 是属于 web 的语言,它适用于 PC、笔记本电脑、平板电脑和移动电话。
JavaScript 被设计为向 HTML 页面增加交互性。
许多 HTML 开发者都不是程序员,但是 JavaScript 却拥有非常简单的语法。几乎每个人都有能力将小的
- iBatis的分页分析与详解
bijian1013
javaibatis
分页是操作数据库型系统常遇到的问题。分页实现方法很多,但效率的差异就很大了。iBatis是通过什么方式来实现这个分页的了。查看它的实现部分,发现返回的PaginatedList实际上是个接口,实现这个接口的是PaginatedDataList类的对象,查看PaginatedDataList类发现,每次翻页的时候最
- 精通Oracle10编程SQL(15)使用对象类型
bijian1013
oracle数据库plsql
/*
*使用对象类型
*/
--建立和使用简单对象类型
--对象类型包括对象类型规范和对象类型体两部分。
--建立和使用不包含任何方法的对象类型
CREATE OR REPLACE TYPE person_typ1 as OBJECT(
name varchar2(10),gender varchar2(4),birthdate date
);
drop type p
- 【Linux命令二】文本处理命令awk
bit1129
linux命令
awk是Linux用来进行文本处理的命令,在日常工作中,广泛应用于日志分析。awk是一门解释型编程语言,包含变量,数组,循环控制结构,条件控制结构等。它的语法采用类C语言的语法。
awk命令用来做什么?
1.awk适用于具有一定结构的文本行,对其中的列进行提取信息
2.awk可以把当前正在处理的文本行提交给Linux的其它命令处理,然后把直接结构返回给awk
3.awk实际工
- JAVA(ssh2框架)+Flex实现权限控制方案分析
白糖_
java
目前项目使用的是Struts2+Hibernate+Spring的架构模式,目前已经有一套针对SSH2的权限系统,运行良好。但是项目有了新需求:在目前系统的基础上使用Flex逐步取代JSP,在取代JSP过程中可能存在Flex与JSP并存的情况,所以权限系统需要进行修改。
【SSH2权限系统的实现机制】
权限控制分为页面和后台两块:不同类型用户的帐号分配的访问权限是不同的,用户使
- angular.forEach
boyitech
AngularJSAngularJS APIangular.forEach
angular.forEach 描述: 循环对obj对象的每个元素调用iterator, obj对象可以是一个Object或一个Array. Iterator函数调用方法: iterator(value, key, obj), 其中obj是被迭代对象,key是obj的property key或者是数组的index,value就是相应的值啦. (此函数不能够迭代继承的属性.)
- java-谷歌面试题-给定一个排序数组,如何构造一个二叉排序树
bylijinnan
二叉排序树
import java.util.LinkedList;
public class CreateBSTfromSortedArray {
/**
* 题目:给定一个排序数组,如何构造一个二叉排序树
* 递归
*/
public static void main(String[] args) {
int[] data = { 1, 2, 3, 4,
- action执行2次
Chen.H
JavaScriptjspXHTMLcssWebwork
xwork 写道 <action name="userTypeAction"
class="com.ekangcount.website.system.view.action.UserTypeAction">
<result name="ssss" type="dispatcher">
- [时空与能量]逆转时空需要消耗大量能源
comsci
能源
无论如何,人类始终都想摆脱时间和空间的限制....但是受到质量与能量关系的限制,我们人类在目前和今后很长一段时间内,都无法获得大量廉价的能源来进行时空跨越.....
在进行时空穿梭的实验中,消耗超大规模的能源是必然
- oracle的正则表达式(regular expression)详细介绍
daizj
oracle正则表达式
正则表达式是很多编程语言中都有的。可惜oracle8i、oracle9i中一直迟迟不肯加入,好在oracle10g中终于增加了期盼已久的正则表达式功能。你可以在oracle10g中使用正则表达式肆意地匹配你想匹配的任何字符串了。
正则表达式中常用到的元数据(metacharacter)如下:
^ 匹配字符串的开头位置。
$ 匹配支付传的结尾位置。
*
- 报表工具与报表性能的关系
datamachine
报表工具birt报表性能润乾报表
在选择报表工具时,性能一直是用户关心的指标,但是,报表工具的性能和整个报表系统的性能有多大关系呢?
要回答这个问题,首先要分析一下报表的处理过程包含哪些环节,哪些环节容易出现性能瓶颈,如何优化这些环节。
一、报表处理的一般过程分析
1、用户选择报表输入参数后,报表引擎会根据报表模板和输入参数来解析报表,并将数据计算和读取请求以SQL的方式发送给数据库。
2、
- 初一上学期难记忆单词背诵第一课
dcj3sjt126com
wordenglish
what 什么
your 你
name 名字
my 我的
am 是
one 一
two 二
three 三
four 四
five 五
class 班级,课
six 六
seven 七
eight 八
nince 九
ten 十
zero 零
how 怎样
old 老的
eleven 十一
twelve 十二
thirteen
- 我学过和准备学的各种技术
dcj3sjt126com
技术
语言VB https://msdn.microsoft.com/zh-cn/library/2x7h1hfk.aspxJava http://docs.oracle.com/javase/8/C# https://msdn.microsoft.com/library/vstudioPHP http://php.net/manual/en/Html
- struts2中token防止重复提交表单
蕃薯耀
重复提交表单struts2中token
struts2中token防止重复提交表单
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月12日 11:52:32 星期日
ht
- 线性查找二维数组
hao3100590
二维数组
1.算法描述
有序(行有序,列有序,且每行从左至右递增,列从上至下递增)二维数组查找,要求复杂度O(n)
2.使用到的相关知识:
结构体定义和使用,二维数组传递(http://blog.csdn.net/yzhhmhm/article/details/2045816)
3.使用数组名传递
这个的不便之处很明显,一旦确定就是不能设置列值
//使
- spring security 3中推荐使用BCrypt算法加密密码
jackyrong
Spring Security
spring security 3中推荐使用BCrypt算法加密密码了,以前使用的是md5,
Md5PasswordEncoder 和 ShaPasswordEncoder,现在不推荐了,推荐用bcrpt
Bcrpt中的salt可以是随机的,比如:
int i = 0;
while (i < 10) {
String password = "1234
- 学习编程并不难,做到以下几点即可!
lampcy
javahtml编程语言
不论你是想自己设计游戏,还是开发iPhone或安卓手机上的应用,还是仅仅为了娱乐,学习编程语言都是一条必经之路。编程语言种类繁多,用途各 异,然而一旦掌握其中之一,其他的也就迎刃而解。作为初学者,你可能要先从Java或HTML开始学,一旦掌握了一门编程语言,你就发挥无穷的想象,开发 各种神奇的软件啦。
1、确定目标
学习编程语言既充满乐趣,又充满挑战。有些花费多年时间学习一门编程语言的大学生到
- 架构师之mysql----------------用group+inner join,left join ,right join 查重复数据(替代in)
nannan408
right join
1.前言。
如题。
2.代码
(1)单表查重复数据,根据a分组
SELECT m.a,m.b, INNER JOIN (select a,b,COUNT(*) AS rank FROM test.`A` A GROUP BY a HAVING rank>1 )k ON m.a=k.a
(2)多表查询 ,
使用改为le
- jQuery选择器小结 VS 节点查找(附css的一些东西)
Everyday都不同
jquerycssname选择器追加元素查找节点
最近做前端页面,频繁用到一些jQuery的选择器,所以特意来总结一下:
测试页面:
<html>
<head>
<script src="jquery-1.7.2.min.js"></script>
<script>
/*$(function() {
$(documen
- 关于EXT
tntxia
ext
ExtJS是一个很不错的Ajax框架,可以用来开发带有华丽外观的富客户端应用,使得我们的b/s应用更加具有活力及生命力。ExtJS是一个用 javascript编写,与后台技术无关的前端ajax框架。因此,可以把ExtJS用在.Net、Java、Php等各种开发语言开发的应用中。
ExtJs最开始基于YUI技术,由开发人员Jack
- 一个MIT计算机博士对数学的思考
xjnine
Math
在过去的一年中,我一直在数学的海洋中游荡,research进展不多,对于数学世界的阅历算是有了一些长进。为什么要深入数学的世界?作为计算机的学生,我没有任何企图要成为一个数学家。我学习数学的目的,是要想爬上巨人的肩膀,希望站在更高的高度,能把我自己研究的东西看得更深广一些。说起来,我在刚来这个学校的时候,并没有预料到我将会有一个深入数学的旅程。我的导师最初希望我去做的题目,是对appe