NOIP 冲刺:常见的递推之卡特兰数

例题:
在一个凸n边形中,通过不相交于n边形内部的对角线,把n边形拆分成若干三角形,问有多少种拆分方案。

啊啊啊啊
卡特兰数
卡特兰数又称卡塔兰数,卡特兰数是组合数学中一个常出现在各种计数问题中的数列。以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)的名字来命名。

原理
令h(0)=1,h(1)=1,catalan数满足递推式:
h(n)= h(0)*h(n-1)+h(1)*h(n-2) + … + h(n-1)*h(0) (n>=2)
例如:h(2)=h(0)*h(1)+h(1)*h(0)=1*1+1*1=2
h(3)=h(0)*h(2)+h(1)*h(1)+h(2)*h(0)=1*2+1*1+2*1=5
另类递推式 :
h(n)=h(n-1)*(4*n-2)/(n+1);
递推关系的解为:
h(n)=C(2n,n)/(n+1) (n=0,1,2,…)
递推关系的另类解为:
h(n)=c(2n,n)-c(2n,n-1)(n=0,1,2,…)

分析
如果纯粹从f(4)=2,f(5)=5,f(6)=14,……,f(n)=n慢慢去归纳,恐怕很难找到问题的递推式,我们必须从一般情况出发去找规律。
因为凸多边形的任意一条边必定属于某一个三角形,所以我们以某一条边为基准,以这条边的两个顶点为起点P1和终点Pn(P即Point),将该凸多边形的顶点依序标记为P1、P2、……、Pn,再在该凸多边形中找任意一个不属于这两个点的顶点Pk(2<=k<=n-1),来构成一个三角形,用这个三角形把一个凸多边形划分成两个凸多边形,其中一个凸多边形,是由P1,P2,……,Pk构成的凸k边形(顶点数即是边数),另一个凸多边形,是由Pk,Pk+1,……,Pn构成的凸n-k+1边形。
此时,我们若把Pk视为确定一点,那么根据乘法原理,f(n)的问题就等价于——凸k多边形的划分方案数乘以凸n-k+1多边形的划分方案数,即选择Pk这个顶点的f(n)=f(k)×f(n-k+1)。而k可以选2到n-1,所以再根据加法原理,将k取不同值的划分方案相加,得到的总方案数为:f(n)=f(2)f(n-2+1)+f(3)f(n-3+1)+……+f(n-1)f(2)。看到此处,再看看卡特兰数的递推式,答案不言而喻,即为f(n)=h(n-2) (n=2,3,4,……)。
最后,令f(2)=1,f(3)=1。

此处f(2)=1和f(3)=1的具体缘由须参考详尽的“卡特兰数”,也许可从凸四边形f(4)=f(2)f(3)+ f(3)f(2)=2×f(2)f(3)倒推,四边形的划分方案不用规律推导都可以知道是2,那么2×f(2)f(3)=2,则f(2)f(3)=1,又f(2)和f(3)若存在的话一定是整数,则f(2)=1,f(3)=1。(因为我没研究过卡特兰数的由来,此处仅作刘抟羽的臆测)
未完成。。。。。。

你可能感兴趣的:(模板,递推)