- 小语言模型(SLM)技术解析:如何在有限资源下实现高效AI推理
硅基打工人
AI人工智能语言模型自然语言处理
引言:为什么小语言模型(SLM)是2025年的技术焦点?2025年,人工智能领域正经历一场“由大变小”的革命。尽管大语言模型(LLM)如GPT-4、GeminiUltra等在复杂任务中表现惊艳,但其高昂的算力成本、庞大的参数量(通常超过千亿)和依赖云端的特性,使得实际落地面临诸多瓶颈。**小语言模型(SmallLanguageModel,SLM)**应运而生,凭借其高效性、经济性和本地化部署能力,
- 区块链和大模型的结合
hanyongyi 1531
区块链
大模型@区块链(4个应用)_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1mu4y1W7bY/?spm_id_from=333.337.search-card.all.click&vd_source=8d683f22b43d55b6630d3bec03cfdb6d通过使用自然语言询问有关Aptos区块链生态系统的任何问题,使用户能够无缝地进入web3
- 数据分析:数据的存储结构、数据类型、数据集成技术、存储模型、查询语言、API、驱动器等
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介数据分析是一个复杂的工程,需要用到多个数据库、数据表、数据文件等数据集成资源。不同的数据集成环境(如分布式系统、异构数据库)会影响数据分析的效率和效果。在进行数据分析时,首先要确定数据集成方案、选择合适的数据模型和索引策略,以及评估各种解决方案之间的优劣。因此,掌握数据的存储结构、数据类型、数据集成技术、存储模型、查询语言、API、驱动器等关键信息对数据分析工作
- Chitu:清华核弹级开源!推理引擎3倍提速+50%省卡,国产芯片告别英伟达绑架
蚝油菜花
每日AI项目与应用实例开源开源人工智能
❤️如果你也关注AI的发展现状,且对AI应用开发感兴趣,我会每日分享大模型与AI领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!AI在线答疑->智能检索历史文章和开源项目->丰富的AI工具库->每日更新->尽在微信公众号->搜一搜:蚝油菜花“还在为天价H100排队?清华让国产芯片跑出3倍英伟达性能!”大家好,我是蚝油菜花。当科技巨头用天价H100显卡筑起算力高墙时,中国团队用
- angular打地鼠
勘察加熊人
typescriptangular.js前端javascript
说明:我计划用angular做一款打地鼠的小游戏,打地鼠游戏实现文档游戏逻辑游戏场景采用3x3网格布局的9个地鼠洞核心机制地鼠随机从洞口弹出点击有效目标获得积分30秒倒计时游戏模式难度系统简单模式:生成间隔1.5s/停留1s普通模式:生成间隔1s/停留0.8s困难模式:生成间隔0.8s/停留0.6s⚙️主要功能游戏控制开始/结束游戏按钮游戏进行中禁止重复启动状态显示实时分数更新动态倒计时显示交互系
- 【SpringMVC】常用注解:@MatrixVariable
字节源流
springmvc
1.作用接收矩阵变量传送的值或许有人听都没听过矩阵变量是什么,下面来介绍一下矩阵变量是一种在URL路径中传递多个键值对参数的方式,它是在Servlet规范之外的一种扩展机制,可用于更灵活地传递参数。例如:/cars;color=red;year=2020,其中color=red和year=2020就是矩阵变量。2.属性name或value:指定矩阵变量的名称,用于从URL中提取对应的值。如果不指定
- 4A架构之间的关系和集成
chuixue24
架构设计架构
首先我们还是来看业务架构业务域,大家都知道在业务架构里面其实有三个核心的内容,一个是价值流,一个是业务能力,一个是业务流程。价值流往往就是顶端的流程,业务能力的分解往往是2~4级,对于详细的业务流程的分解往往就到了5~7级,只是原来在业务架构里面,我们没有太强调流程架构,实际上从架构的Y模型里面可以看到,在业务架构里面是有两个视角,一个就是业务能力的视角,一个是业务流程的视角。所以说我在这个地方专
- Solana
倒霉男孩
Solana区块链web3
文章目录概要Solana的核心技术特点1.历史证明(ProofofHistory,PoH)2.混合共识机制3.低费用模型4.开发者生态5.存储模式Solanavs其他主流链的关键区别1.性能对比2.开发模型对比3.去中心化与安全性4.生态应用方向三、Solana的优缺点总结优势劣势概要Solana是近年来快速崛起的高性能区块链平台,其核心设计目标是通过技术创新突破传统区块链的性能瓶颈(如以太坊的低
- DG-Manba模型详解及代码复现
清风AI
深度学习计算机视觉pytorch人工智能神经网络
模型特点在DG-Manba模型的基础架构中,其独特的模型特点使其在处理序列数据时展现出卓越的性能。本节将详细介绍DG-Manba模型在架构、功能和性能方面的创新之处。选择性机制DG-Manba模型的核心创新在于其选择性机制。这种机制允许模型根据输入数据的特征动态调整其行为,类似于递归神经网络(RNN)中的门控机制,但在状态空间模型(SSM)的框架下提供了更广泛的应用可能性。通过这种方式,DG-Ma
- 2024前端面试题-css篇
Adasunshine
面试题前端css面试
1.p和div区别p自带有一定margin-top和margin-bottom属性值,而div两个属性值为0,也便是两个p之间有不一定间距,而div没有。2.对css盒模型的理解标准盒模型:content不包括padding、border、marginie盒模型:content包括padding、border、margin在不设置的情况下,默认为W3C盒模型(标准盒模型)。标准盒模型:box-si
- Stable Diffusion 模型具体如何设置参数?
壁纸样机神器
stablediffusion人工智能计算机视觉
基础参数设置随机种子(seed):设置一个固定的随机种子值,可以确保在相同文本提示下生成相同的图像。如果设置为-1,则每次生成的图像都是随机的。num_inference_steps:控制模型推理的步数。步数越多,生成的图像质量通常越高,但生成时间也会相应增加。通常使用默认值50步,如果需要更快的结果可以减少步数,而更高质量的图像则可以适当增加步数。guidance_scale:用于调整生成图像对
- YOLO优化之扫描融合模块(SimVSS Block)
清风AI
人工智能计算机视觉YOLO目标检测深度学习目标跟踪
研究背景在自动驾驶技术快速发展的背景下,目标检测作为其核心组成部分面临着严峻挑战。驾驶场景中目标尺度和大小的巨大差异,以及视觉特征不显著且易受噪声干扰的问题,对辅助驾驶系统的安全性构成了潜在威胁。传统的卷积神经网络(CNN)虽然在目标检测领域取得了显著进展,但仍存在局限性,如局部关注性导致难以有效检测不同尺度的目标。为克服这些问题,研究人员开始探索将状态空间模型(SSM)引入目标检测领域,以期提高
- 新手村:线性回归-实战-波士顿房价预测
嘉羽很烦
机器学习线性回归算法回归
新手村:线性回归-实战-波士顿房价预测前置条件阅读:新手村:线性回归了解相关概念实验目的1.熟悉机器学习的一般流程2.掌握基础的数据处理方法3.理解常用的回归算法教学例子:预测房价(以波士顿房价数据集为例)本次实验,你将使用真实的波士顿房价数据集建立起一个房价预测模型,并且了解到机器学习中的若干重要概念和评价方法,请通过机器学习建立回归模型,即:Y=θ0+θ1×X1+θ2×X2+θ3×X3+⋯+θ
- 新手村:混淆矩阵
嘉羽很烦
机器学习机器学习
新手村:混淆矩阵一、前置条件知识点要求学习资源分类模型基础理解分类任务(如二分类、多分类)和常见分类算法(如逻辑回归、决策树)。《Hands-OnMachineLearningwithScikit-Learn》Python基础熟悉变量、循环、函数、列表、字典等基本语法。《PythonCrashCourse》或在线教程(如Codecademy)scikit-learn基础掌握模型训练、预测、评估的基
- 计算机视觉(Computer Vision, CV)的入门到实践的详细学习路线
云梦优选
计算机数据库大数据计算机视觉学习人工智能
一、基础准备1.数学基础线性代数深入矩阵运算,理解矩阵乘法、转置、逆等基本概念。掌握特征值与特征向量的几何意义,理解其在图像压缩、特征提取中的应用。学习奇异值分解(SVD)及其在降维和数据压缩中的具体应用。概率与统计熟悉贝叶斯定理及其在分类任务中的应用,如朴素贝叶斯分类器。理解常见概率分布(如正态分布、二项分布)及其性质。学习统计推断方法,如假设检验、置信区间估计,以评估模型性能。微积分掌握梯度、
- RAG技术深度解析:从基础Agent到复杂推理Deep Search的架构实践
小爷毛毛(卓寿杰)
系统架构与解决方案搜索推荐架构语言模型人工智能自然语言处理
重磅推荐专栏:《大模型AIGC》《课程大纲》《知识星球》本专栏致力于探索和讨论当今最前沿的技术趋势和应用领域,包括但不限于ChatGPT和StableDiffusion等。我们将深入研究大型模型的开发和应用,以及与之相关的人工智能生成内容(AIGC)技术。通过深入的技术解析和实践经验分享,旨在帮助读者更好地理解和应用这些领域的最新进展一、什么是RAGAgent?1.从信息处理到智能生成在自然语言处
- Free QWQ - 世界首个免费无限制分布式 QwQ API
安替-AnTi
大模型理论&实战指南开源大模型qwen分布式免费
文章目录简介截图网址/二维码介绍/推荐语核心特点使用方式技术栈简介一句话简介:基于QwQ32B大语言模型的完全免费、无限制、无需注册登录的分布式AI算力平台。截图网址/二维码官方网站:https://qwq.aigpu.cn介绍/推荐语FreeQWQ是世界上第一个完全免费、无限制的分布式AI算力平台,基于阿里最新开源的QwQ32B大语言模型提供强大的AI服务。通过创新的分布式算力架构,整合了来自全
- 【解锁机器学习:探寻数学基石】
游戏乐趣
机器学习人工智能
机器学习中的数学基础探秘在当今数字化时代,机器学习无疑是最具影响力和发展潜力的技术领域之一。从图像识别到自然语言处理,从智能推荐系统到自动驾驶,机器学习的应用无处不在,深刻地改变着我们的生活和工作方式。然而,在这看似神奇的机器学习背后,数学作为其坚实的理论基础,起着不可或缺的关键作用。毫不夸张地说,数学是打开机器学习大门的钥匙,是理解和掌握机器学习算法与模型的核心所在。想象一下,机器学习就像是一座
- 即插即用模块--KANLinear
苏格拉没有鞋底
模型训练深度学习人工智能python
KAN网络KAN网络即Kolmogorov-Arnold网络,是一类基于Kolmogorov-Arnold表示定理的神经网络架构,具有强大的非线性表达能力。在相同迭代次数下超越传统MLP,不仅训练速度更快,收敛性更好,而且在拟合复杂函数时的精度也明显提高。这是一个即插即用模块–KANLinear,使用时import这个代码文件,然后模型中的nn.Linear换成这个KANLinear即可impor
- 机器学习——正则化、欠拟合、过拟合、学习曲线
代码的建筑师
学习记录机器学习机器学习学习曲线过拟合欠拟合正则化
过拟合(overfitting):模型只能拟合训练数据的状态。即过度训练。避免过拟合的几种方法:①增加全部训练数据的数量(最为有效的方式)②使用简单的模型(简单的模型学不够,复杂的模型学的太多),这里的简单指的是不要过于复杂③正则化(对目标函数后加上正则化项):使得这个“目标函数+正则化项”的值最小,即为正则化,用防止参数变得过大(参数值变小,意味着对目标函数的影响变小),λ是正则化参数,代表正则
- MySQL知识点
梅塔文·欧帕西安卡琼
MySQLmysql
什么是SQL注入?SQL注入就是在用户输入的字符串中加入SQL语句,如果在设计不良的程序中忽略了检查,那么这些注入进去的SQL语句就会被数据库服务器误认为是正常的SQL语句而运行,攻击者就可以执行计划外的命令或访问未被授权的数据。SQL注入的原理SQL注入的原理主要有以下4点:1.恶意拼接查询我们知道,SQL语句可以查询、插入、更新和删除数据,且使用分号来分隔不同的命令。例如:SELECT*FRO
- UDS学习计划
正当少年
UDS学习
以下是一份详细的UDS(UnifiedDiagnosticServices,统一诊断服务)学习计划,涵盖从基础到实战的系统化学习路径,适合初学者和有一定基础的开发者。计划周期为6-8周,每周投入10-15小时。第一阶段:基础认知(1周)学习目标理解UDS的基本概念和应用场景掌握UDS协议的核心组成部分熟悉相关工具的使用学习内容UDS概述UDS的定义与作用(ISO14229标准)应用场景:ECU诊断
- 了解状态机
Mcband
java
前言状态机(StateMachine)是一种数学模型,用于描述系统或程序在不同状态之间转换的行为。它由一组状态、转移条件和动作组成。一、什么是状态机?状态机可以被看作是一个抽象的机器,它可以处于不同的状态,并根据输入条件执行相应的动作来改变状态。状态表示了系统或程序所处的特定情况或阶段,而转移条件决定了在何种条件下从一个状态转移到另一个状态,动作则表示在状态转移时要执行的操作。二、状态机的实例一个
- 从过拟合到强化学习:机器学习核心知识全解析
吴师兄大模型
0基础实现机器学习入门到精通机器学习人工智能过拟合强化学习pythonLLMscikit-learn
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 应用层之网络应用模型,HTTP/HTTPS协议
@ANONYME
httphttps网络协议p2p
应用层是网络协议栈的最顶层,直接为应用程序提供通信服务,定义了不同主机间应用进程交互的规则,包括报文类型、语法、语义及通信时序一、网络应用模型1.定义及特点模型定义核心特点典型应用场景C/S客户端向服务器发起请求,服务器集中处理并响应资源,依赖中心化架构1.角色明确(客户端与服务器分离)2.资源集中在服务器端3.依赖网络稳定性与服务器性能4.易于管理和维护Web服务(HTTP)、邮件系统(SMTP
- Simulink实例演示:智能车辆自动超车策略仿真
xiaoheshang_123
手把手教你学MATLAB专栏MATLAB开发项目实例1000例专栏matlabsimulink
目录Simulink实例演示:智能车辆自动超车策略仿真一、背景介绍二、所需工具和环境三、步骤详解步骤1:创建Simulink模型
- 利用matlab实现贝叶斯优化算法(BO)优化支持向量机回归(SVR)的超参数
是内啡肽耶
算法matlab支持向量机机器学习回归
【导读】在机器学习建模中,支持向量机(SVM)回归模型的效果高度依赖超参数选择。但手动调参就像"大海捞针",而网格搜索又面临"计算爆炸"的难题。今天给大家介绍一个智能调参黑科技——贝叶斯优化算法。通过Matlab实现,只需几分钟就能让模型性能自动升级!一、为什么要用贝叶斯优化调参?传统调参三大痛点:C参数(正则化强度):过小导致过拟合,过大削弱模型能力ε参数(不敏感区域):决定对预测误差的容忍度核
- LangChain大模型应用开发:LangGraph快速入门
老赵爱学习
langchainpython自然语言处理人工智能langgraph
介绍大家好,博主又来给大家分享知识了。一直以来,我都非常感激大家对我的支持与鼓励,大家的点赞、关注和收藏,不仅是对博主分享内容的认可,更是博主不断创作、坚持分享知识的永恒动力。今天给大家分享的内容是使用LangChain进行大模型应用开发中的LangGraph,那么什么是LangGraph呢?我们直接进入正题。LangGraphLangGraph概述LangGraph是一个用于借助大语言模型(LL
- 大模型巅峰对决:DeepSeek vs GPT-4/Claude/PaLM-2 全面对比与核心差异揭秘
accurater
机器学习科技人工智能
喜欢可以到主页订阅专栏目录技术架构对比性能表现与基准测试多模态与多语言能力推理效率与成本分析开源生态与行业适配应用场景与案例研究未来发展与技术趋势代码实现与调用示例1.技术架构对比DeepSeek:动态稀疏激活的混合专家系统(MoE)动态路由机制:每个输入仅激活约5.5%的参数(如6710亿参数中激活370亿),显著降低计算能耗40%。模块化设计:支持金融、医疗等领域的即插即用式微调,行业适配能力
- 3月份学习任务、工作计划
Kamui_0us
学习
3月18日报名六级3月22日之前收集团日材料3月22日收集五四述职材料3月29日计算解二级学英语:为了六级为了绩点为了大英赛为了雅思接续规划留学计划恶补数学,拉下的慢慢补回来今日学习任务:学习本周的解析几何课程,背六级单词,还有时间可以看看github有关知识
- jsonp 常用util方法
hw1287789687
jsonpjsonp常用方法jsonp callback
jsonp 常用java方法
(1)以jsonp的形式返回:函数名(json字符串)
/***
* 用于jsonp调用
* @param map : 用于构造json数据
* @param callback : 回调的javascript方法名
* @param filters : <code>SimpleBeanPropertyFilter theFilt
- 多线程场景
alafqq
多线程
0
能不能简单描述一下你在java web开发中需要用到多线程编程的场景?0
对多线程有些了解,但是不太清楚具体的应用场景,能简单说一下你遇到的多线程编程的场景吗?
Java多线程
2012年11月23日 15:41 Young9007 Young9007
4
0 0 4
Comment添加评论关注(2)
3个答案 按时间排序 按投票排序
0
0
最典型的如:
1、
- Maven学习——修改Maven的本地仓库路径
Kai_Ge
maven
安装Maven后我们会在用户目录下发现.m2 文件夹。默认情况下,该文件夹下放置了Maven本地仓库.m2/repository。所有的Maven构件(artifact)都被存储到该仓库中,以方便重用。但是windows用户的操作系统都安装在C盘,把Maven仓库放到C盘是很危险的,为此我们需要修改Maven的本地仓库路径。
- placeholder的浏览器兼容
120153216
placeholder
【前言】
自从html5引入placeholder后,问题就来了,
不支持html5的浏览器也先有这样的效果,
各种兼容,之前考虑,今天测试人员逮住不放,
想了个解决办法,看样子还行,记录一下。
【原理】
不使用placeholder,而是模拟placeholder的效果,
大概就是用focus和focusout效果。
【代码】
<scrip
- debian_用iso文件创建本地apt源
2002wmj
Debian
1.将N个debian-506-amd64-DVD-N.iso存放于本地或其他媒介内,本例是放在本机/iso/目录下
2.创建N个挂载点目录
如下:
debian:~#mkdir –r /media/dvd1
debian:~#mkdir –r /media/dvd2
debian:~#mkdir –r /media/dvd3
….
debian:~#mkdir –r /media
- SQLSERVER耗时最长的SQL
357029540
SQL Server
对于DBA来说,经常要知道存储过程的某些信息:
1. 执行了多少次
2. 执行的执行计划如何
3. 执行的平均读写如何
4. 执行平均需要多少时间
列名 &
- com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil
7454103
eclipse
今天eclipse突然报了com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil 错误,并且工程文件打不开了,在网上找了一下资料,然后按照方法操作了一遍,好了,解决方法如下:
错误提示信息:
An error has occurred.See error log for more details.
Reason:
com/genuitec/
- 用正则删除文本中的html标签
adminjun
javahtml正则表达式去掉html标签
使用文本编辑器录入文章存入数据中的文本是HTML标签格式,由于业务需要对HTML标签进行去除只保留纯净的文本内容,于是乎Java实现自动过滤。
如下:
public static String Html2Text(String inputString) {
String htmlStr = inputString; // 含html标签的字符串
String textSt
- 嵌入式系统设计中常用总线和接口
aijuans
linux 基础
嵌入式系统设计中常用总线和接口
任何一个微处理器都要与一定数量的部件和外围设备连接,但如果将各部件和每一种外围设备都分别用一组线路与CPU直接连接,那么连线
- Java函数调用方式——按值传递
ayaoxinchao
java按值传递对象基础数据类型
Java使用按值传递的函数调用方式,这往往使我感到迷惑。因为在基础数据类型和对象的传递上,我就会纠结于到底是按值传递,还是按引用传递。其实经过学习,Java在任何地方,都一直发挥着按值传递的本色。
首先,让我们看一看基础数据类型是如何按值传递的。
public static void main(String[] args) {
int a = 2;
- ios音量线性下降
bewithme
ios音量
直接上代码吧
//second 几秒内下降为0
- (void)reduceVolume:(int)second {
KGVoicePlayer *player = [KGVoicePlayer defaultPlayer];
if (!_flag) {
_tempVolume = player.volume;
- 与其怨它不如爱它
bijian1013
选择理想职业规划
抱怨工作是年轻人的常态,但爱工作才是积极的心态,与其怨它不如爱它。
一般来说,在公司干了一两年后,不少年轻人容易产生怨言,除了具体的埋怨公司“扭门”,埋怨上司无能以外,也有许多人是因为根本不爱自已的那份工作,工作完全成了谋生的手段,跟自已的性格、专业、爱好都相差甚远。
- 一边时间不够用一边浪费时间
bingyingao
工作时间浪费
一方面感觉时间严重不够用,另一方面又在不停的浪费时间。
每一个周末,晚上熬夜看电影到凌晨一点,早上起不来一直睡到10点钟,10点钟起床,吃饭后玩手机到下午一点。
精神还是很差,下午像一直野鬼在城市里晃荡。
为何不尝试晚上10点钟就睡,早上7点就起,时间完全是一样的,把看电影的时间换到早上,精神好,气色好,一天好状态。
控制让自己周末早睡早起,你就成功了一半。
有多少个工作
- 【Scala八】Scala核心二:隐式转换
bit1129
scala
Implicits work like this: if you call a method on a Scala object, and the Scala compiler does not see a definition for that method in the class definition for that object, the compiler will try to con
- sudoku slover in Haskell (2)
bookjovi
haskellsudoku
继续精简haskell版的sudoku程序,稍微改了一下,这次用了8行,同时性能也提高了很多,对每个空格的所有解不是通过尝试算出来的,而是直接得出。
board = [0,3,4,1,7,0,5,0,0,
0,6,0,0,0,8,3,0,1,
7,0,0,3,0,0,0,0,6,
5,0,0,6,4,0,8,0,7,
- Java-Collections Framework学习与总结-HashSet和LinkedHashSet
BrokenDreams
linkedhashset
本篇总结一下两个常用的集合类HashSet和LinkedHashSet。
它们都实现了相同接口java.util.Set。Set表示一种元素无序且不可重复的集合;之前总结过的java.util.List表示一种元素可重复且有序
- 读《研磨设计模式》-代码笔记-备忘录模式-Memento
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
/*
* 备忘录模式的功能是,在不破坏封装性的前提下,捕获一个对象的内部状态,并在对象之外保存这个状态,为以后的状态恢复作“备忘”
- 《RAW格式照片处理专业技法》笔记
cherishLC
PS
注意,这不是教程!仅记录楼主之前不太了解的
一、色彩(空间)管理
作者建议采用ProRGB(色域最广),但camera raw中设为ProRGB,而PS中则在ProRGB的基础上,将gamma值设为了1.8(更符合人眼)
注意:bridge、camera raw怎么设置显示、输出的颜色都是正确的(会读取文件内的颜色配置文件),但用PS输出jpg文件时,必须先用Edit->conv
- 使用 Git 下载 Spring 源码 编译 for Eclipse
crabdave
eclipse
使用 Git 下载 Spring 源码 编译 for Eclipse
1、安装gradle,下载 http://www.gradle.org/downloads
配置环境变量GRADLE_HOME,配置PATH %GRADLE_HOME%/bin,cmd,gradle -v
2、spring4 用jdk8 下载 https://jdk8.java.
- mysql连接拒绝问题
daizj
mysql登录权限
mysql中在其它机器连接mysql服务器时报错问题汇总
一、[running]
[email protected]:~$mysql -uroot -h 192.168.9.108 -p //带-p参数,在下一步进行密码输入
Enter password: //无字符串输入
ERROR 1045 (28000): Access
- Google Chrome 为何打压 H.264
dsjt
applehtml5chromeGoogle
Google 今天在 Chromium 官方博客宣布由于 H.264 编解码器并非开放标准,Chrome 将在几个月后正式停止对 H.264 视频解码的支持,全面采用开放的 WebM 和 Theora 格式。
Google 在博客上表示,自从 WebM 视频编解码器推出以后,在性能、厂商支持以及独立性方面已经取得了很大的进步,为了与 Chromium 现有支持的編解码器保持一致,Chrome
- yii 获取控制器名 和方法名
dcj3sjt126com
yiiframework
1. 获取控制器名
在控制器中获取控制器名: $name = $this->getId();
在视图中获取控制器名: $name = Yii::app()->controller->id;
2. 获取动作名
在控制器beforeAction()回调函数中获取动作名: $name =
- Android知识总结(二)
come_for_dream
android
明天要考试了,速速总结如下
1、Activity的启动模式
standard:每次调用Activity的时候都创建一个(可以有多个相同的实例,也允许多个相同Activity叠加。)
singleTop:可以有多个实例,但是不允许多个相同Activity叠加。即,如果Ac
- 高洛峰收徒第二期:寻找未来的“技术大牛” ——折腾一年,奖励20万元
gcq511120594
工作项目管理
高洛峰,兄弟连IT教育合伙人、猿代码创始人、PHP培训第一人、《细说PHP》作者、软件开发工程师、《IT峰播》主创人、PHP讲师的鼻祖!
首期现在的进程刚刚过半,徒弟们真的很棒,人品都没的说,团结互助,学习刻苦,工作认真积极,灵活上进。我几乎会把他们全部留下来,现在已有一多半安排了实际的工作,并取得了很好的成绩。等他们出徒之日,凭他们的能力一定能够拿到高薪,而且我还承诺过一个徒弟,当他拿到大学毕
- linux expect
heipark
expect
1. 创建、编辑文件go.sh
#!/usr/bin/expect
spawn sudo su admin
expect "*password*" { send "13456\r\n" }
interact
2. 设置权限
chmod u+x go.sh 3.
- Spring4.1新特性——静态资源处理增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- idea ubuntuxia 乱码
liyonghui160com
1.首先需要在windows字体目录下或者其它地方找到simsun.ttf 这个 字体文件。
2.在ubuntu 下可以执行下面操作安装该字体:
sudo mkdir /usr/share/fonts/truetype/simsun
sudo cp simsun.ttf /usr/share/fonts/truetype/simsun
fc-cache -f -v
- 改良程序的11技巧
pda158
技巧
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。
让我们看一些基本的编程技巧:
尽量保持方法简短
永远永远不要把同一个变量用于多个不同的
- 300个涵盖IT各方面的免费资源(下)——工作与学习篇
shoothao
创业免费资源学习课程远程工作
工作与生产效率:
A. 背景声音
Noisli:背景噪音与颜色生成器。
Noizio:环境声均衡器。
Defonic:世界上任何的声响都可混合成美丽的旋律。
Designers.mx:设计者为设计者所准备的播放列表。
Coffitivity:这里的声音就像咖啡馆里放的一样。
B. 避免注意力分散
Self Co
- 深入浅出RPC
uule
rpc
深入浅出RPC-浅出篇
深入浅出RPC-深入篇
RPC
Remote Procedure Call Protocol
远程过程调用协议
它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。RPC协议假定某些传输协议的存在,如TCP或UDP,为通信程序之间携带信息数据。在OSI网络通信模型中,RPC跨越了传输层和应用层。RPC使得开发