消息队列 已经逐渐成为企业应用系统 内部通信 的核心手段。它具有 低耦合、可靠投递、广播、流量控制、最终一致性 等一系列功能。
当前使用较多的 消息队列 有 RabbitMQ、RocketMQ、ActiveMQ、Kafka、ZeroMQ、MetaMQ 等,而部分 数据库 如 Redis、MySQL 以及 phxsql 也可实现消息队列的功能。
1. 消息队列概述
消息队列 是指利用 高效可靠 的 消息传递机制 进行与平台无关的 数据交流,并基于 数据通信来进行分布式系统的集成。
通过提供 消息传递 和 消息排队 模型,它可以在 分布式环境 下提供 应用解耦、弹性伸缩、冗余存储、流量削峰、异步通信、数据同步 等等功能,其作为 分布式系统架构 中的一个重要组件,有着举足轻重的地位。
2. 消息队列的特点
2.1. 采用异步处理模式
消息发送者 可以发送一个消息而无须等待响应。消息发送者 将消息发送到一条 虚拟的通道(主题 或 队列)上,消息接收者 则 订阅 或是 监听 该通道。一条信息可能最终转发给 一个或多个 消息接收者,这些接收者都无需对 消息发送者 做出 同步回应。整个过程都是 异步的。
2.2. 应用系统之间解耦合
主要体现在如下两点:
比如在线交易系统为了保证数据的 最终一致,在 支付系统 处理完成后会把 支付结果 放到 消息中间件 里,通知 订单系统 修改 订单支付状态。两个系统是通过消息中间件解耦的。
3. 消息队列的传递服务模型
消息队列的 传递服务模型 如下图所示:
4. 消息队列的的传输模式
4.1. 点对点模型
点对点模型 用于 消息生产者 和 消息消费者 之间 点到点 的通信。消息生产者将消息发送到由某个名字标识的特定消费者。这个名字实际上对于消费服务中的一个 队列(Queue),在消息传递给消费者之前它被 存储 在这个队列中。队列消息 可以放在 内存 中也可以 持久化,以保证在消息服务出现故障时仍然能够传递消息。
传统的点对点消息中间件通常由 消息队列服务、消息传递服务、消息队列 和 消息应用程序接口 API 组成,其典型的结构如下图所示。
特点:
示意图如下所示:
4.2. 发布/订阅模型(Pub/Sub)
发布者/订阅者 模型支持向一个特定的 消息主题 生产消息。0 或 多个订阅者 可能对接收来自 特定消息主题 的消息感兴趣。
在这种模型下,发布者和订阅者彼此不知道对方,就好比是匿名公告板。这种模式被概况为:多个消费者可以获得消息,在 发布者 和 订阅者 之间存在 时间依赖性。发布者需要建立一个 订阅(subscription),以便能够消费者订阅。订阅者 必须保持 持续的活动状态 并 接收消息。
在这种情况下,在订阅者 未连接时,发布的消息将在订阅者 重新连接 时 重新发布,如下图所示:
特性:
注意:
5. 消息队列应用场景
当你需要使用 消息队列 时,首先需要考虑它的必要性。可以使用消息队列的场景有很多,最常用的几种,是做 应用程序松耦合、异步处理模式、发布与订阅、最终一致性、错峰流控 和 日志缓冲 等。反之,如果需要 强一致性,关注业务逻辑的处理结果,则使用 RPC 显得更为合适。
5.1. 异步处理
非核心 流程 异步化,减少系统 响应时间,提高 吞吐量。例如:短信通知、终端状态推送、App 推送、用户注册 等。
消息队列 一般都内置了 高效的通信机制,因此也可以用于单纯的消息通讯,比如实现 点对点消息队列 或者 聊天室 等。
应用案例
网站用户注册,注册成功后会过一会发送邮件确认或者短息。
5.2. 系统解耦
5.3. 最终一致性
最终一致性 不是 消息队列 的必备特性,但确实可以依靠 消息队列 来做 最终一致性 的事情。
像 Kafka 一类的设计,在设计层面上就有 丢消息 的可能(比如 定时刷盘,如果掉电就会丢消息)。哪怕只丢千分之一的消息,业务也必须用其他的手段来保证结果正确。
5.4. 广播
生产者/消费者 模式,只需要关心消息是否 送达队列,至于谁希望订阅和需要消费,是 下游的事情,无疑极大地减少了开发和联调的工作量。
5.5. 流量削峰和流控
当 上下游系统 处理能力存在差距的时候,利用 消息队列 做一个通用的 “漏斗”,进行 限流控制。在下游有能力处理的时候,再进行分发。
举个例子:用户在支付系统成功结账后,订单系统会通过短信系统向用户推送扣费通知。 短信系统 可能由于 短板效应,速度卡在 网关 上(每秒几百次请求),跟 前端的并发量 不是一个数量级。 于是,就造成 支付系统 和 短信系统 的处理能力出现差异化。
然而用户晚上个半分钟左右收到短信,一般是不会有太大问题的。如果没有消息队列,两个系统之间通过 协商、滑动窗口 等复杂的方案也不是说不能实现。但 系统复杂性 指数级增长,势必在 上游 或者 下游 做 存储,并且要处理 定时、拥塞 等一系列问题。而且每当有 处理能力有差距 的时候,都需要 单独 开发一套逻辑来维护这套逻辑。
所以,利用中间系统转储两个系统的通信内容,并在下游系统有能力处理这些消息的时候,再处理这些消息,是一套相对较通用的方式。
应用案例
5.6. 日志处理
将消息队列用在 日志处理 中,比如 Kafka 的应用,解决 海量日志 传输和缓冲的问题。
应用案例
把日志进行集中收集,用于计算 PV、用户行为分析 等等。
5.7. 消息通讯
消息队列一般都内置了 高效的通信机制,因此也可以用于单纯的 消息通讯,比如实现 点对点消息队列 或者 聊天室 等。
6. 消息队列的推拉模型
6.1. Push推消息模型
消息生产者 将消息发送给 消息队列,消息队列 又将消息推给 消息消费者。
6.2. Pull拉消息模型
消费者 请求 消息队列 接受消息,消息生产者 从 消息队列 中拉该消息。
6.3. 两种类型的区别
7. 消息队列技术对比
本部分主要介绍四种常用的消息队列(ActiveMQ / RabbitMQ / RocketMQ / Kafka)的主要特性、优点、缺点。
7.1. ActiveMQ
ActiveMQ 是由 Apache 出品,ActiveMQ 是一个完全支持JMS1.1 和 J2EE 1.4 规范的 JMS Provider 实现。它非常快速,支持 多种语言的客户端 和 协议,而且可以非常容易的嵌入到企业的应用环境中,并有许多高级功能。
(a) 主要特性
(b) 部署环境
ActiveMQ 可以运行在 Java 语言所支持的平台之上。使用 ActiveMQ 需要:
(c) 优点
(d) 缺点
7.2. RabbitMQ
RabbitMQ 于 2007 年发布,是一个在 AMQP (高级消息队列协议)基础上完成的,可复用的企业消息系统,是当前最主流的消息中间件之一。
(a) 主要特性
(b) 部署环境
RabbitMQ 可以运行在 Erlang 语言所支持的平台之上,包括 Solaris,BSD,Linux,MacOSX,TRU64,Windows 等。使用 RabbitMQ 需要:
(c) 优点
(d) 缺点
7.3. RocketMQ
RocketMQ 出自 阿里 的开源产品,用 Java 语言实现,在设计时参考了 Kafka,并做出了自己的一些改进,消息可靠性上 比 Kafka 更好。RocketMQ 在阿里内部被广泛应用在 订单,交易,充值,流计算,消息推送,日志流式处理,binglog 分发 等场景。
(a) 主要特性
(b) 部署环境
RocketMQ 可以运行在 Java 语言所支持的平台之上。使用 RocketMQ 需要:
(c) 优点
(d) 缺点
7.4. Kafka
Apache Kafka 是一个 分布式消息发布订阅 系统。它最初由 LinkedIn 公司基于独特的设计实现为一个 分布式的日志提交系统 (a distributed commit log),之后成为 Apache 项目的一部分。Kafka 性能高效、可扩展良好 并且 可持久化。它的 分区特性,可复制 和 可容错 都是其不错的特性。
(a) 主要特性
(b) 部署环境
使用 Kafka 需要:
(c) 优点
(d) 缺点
7.5. 几种消息队列对比
这里列举了上述四种消息队列的差异对比:
Kafka 在于 分布式架构,RabbitMQ 基于 AMQP 协议 来实现,RocketMQ 的思路来源于 Kafka,改成了 主从结构,在 事务性 和 可靠性 方面做了优化。广泛来说,电商、金融 等对 事务一致性 要求很高的,可以考虑 RabbitMQ 和 RocketMQ,对 性能要求高 的可考虑 Kafka。
本文介绍了消息队列的特点,消息队列的 传递服务模型,消息的 传输方式,消息的 推拉模式。然后介绍了 ActiveMQ,RabbitMQ,RocketMQ 和 Kafka 几种常见的消息队列,阐述了 各种消息队列 的 主要特点 和 优缺点。通过本文,对于消息队列及相关技术选型,相信你会有了更深入的理解和认识。更多细节和原理性的东西,还需在实践中见真知!