用Python 来建立Neural Network

# import the relevant libraries
import numpy as np   # mathematical operation
import matplotlib.pyplot as plt  # nice graphs
from mpl_toolkits.mplot3d import Axes3D   # Nice 3D graphs

# Generate random input data to train on
observations = 1000

xs = np.random.uniform(low=-10, high=10, size=(observations,1))
zs = np.random.uniform(-10,10,(observations,1))

inputs = np.column_stack((xs,zs))

print(inputs.shape)

# Create the targets we will aim at
noise = np.random.uniform(-1,1,(observations,1))
targets = 2*xs - 3*zs + 5 + noise
print(targets.shape)

# Plot the training data

"""
In order to use the 3D plot, the objects should have a certain shape, so we reshape the targets.
The proper method to use is reshape and takes as arguments the dimensions in which we want to fit the object.
"""
targets = targets.reshape(observations,)

# Plotting according to the conventional matplotlib.pyplot syntax
# Declare the figure
fig = plt.figure()

# A method allowing us to create the 3D plot
ax = fig.add_subplot(111, projection='3d')

# Choose the axes
ax.plot(xs,zs,targets)

# Set Labels
ax.set_xlabel('xs')
ax.set_ylabel('zs')
ax.set_zlabel('Targets')

# You can fiddle with the azim parameter to plot the data from different angles. Just change the  value of azim = 100
# to azim = 0; azim = 200, or whatever. Check and see what happens
ax.view_init(azim=100)

# So far we were just describing the plot. This method actually shows the plot.
plt.show()
targets = targets.reshape(observations,1)

# Initialize variables
init_range = 0.1
weights = np.random.uniform(-init_range, init_range, size=(2,1))
biases = np.random.uniform(-init_range, init_range, size=1)  # In machine learning, there are many biases as there are outputs
print(weights)
print(biases)

# Setting a learning rate
learning_rate = 0.02

# Train the model
for i in range(100):
    outputs = np.dot(inputs, weights) + biases  # inputs = 1000*2,  weights = 2*1   outputs = 1000*1  biases = scalar
    deltas = outputs - targets   # deltas = 1000*1  outputs = 1000*1  targets = 1000*1
    loss = np.sum(deltas ** 2)/2/observations
    print(loss)
    deltas_scaled = deltas/observations
    weights = weights - learning_rate * np.dot(inputs.T, deltas_scaled)  # weights = 2*1, learning_rate = scalar, inputs.T = 2*1000,  deltas_scaled=1000*1
    biases = biases - learning_rate * np.sum(deltas_scaled)

print (weights, biases)

# plot last outputs vs targets
plt.plot(outputs, targets)
plt.xlabel('outputs')
plt.ylabel('targets')
plt.show()

在这里插入图片描述

用Python 来建立Neural Network_第1张图片

用Python 来建立Neural Network_第2张图片

用Python 来建立Neural Network_第3张图片

在这里插入图片描述

你可能感兴趣的:(Data,Science,Bootcamp)