【 MATLAB 】协方差 cov以及协方差矩阵基础知识

Covariance 翻译为协方差,因此,MATLAB里面的函数cov也就是求协方差了。至于MATLAB语言里面的协方差函数cov的语法是什么样的以及怎么用的,我们稍后再说,这里首先介绍下协方差相关的基础知识点。

本文内容参考自MATLAB的帮助手册,有的时候不得不说,数据手册才是最好的教材,不仅对于MATLAB,这里提供的都是原滋原味的官方内容。例如我经常去了解一些MATLAB中的相关函数,命令等,都可以通过MATLAB的数据手册;如果我想了解一些IP核以及与之相关的知识,我可以查看Xilinx的官方数据手册,内容应有尽有,相比而言,如果我去借一些书籍去查看FPGA的IP核,不仅版本陈旧,而已也有可能翻译的有问题,让人一知半解。

废话就说到这里,下面正式开始介绍。



目录

基础知识

协方差(Covariance):

协方差矩阵( covariance matrix):

矩阵的协方差:

方差:(这是赠送的)

MATLAB中的 cov

语法格式:

C = cov(A)

C = cov(A,B) 

C = cov(___,w)

C = cov(___,nanflag)

示例

C = cov(A) 举例(矩阵的协方差)

cov(A,B) 举例之两个向量之间的协方差

cov(A,B) 举例之两个矩阵之间的协方差

Specify Normalization Weight

Covariance Excluding NaN




基础知识

协方差(Covariance):

对于两个随机变量向量A和B,那二者之间的协方差定义为:

其中\mu _{A}表示向量A的均值,\mu_{B}表示向量B的均值。

协方差矩阵( covariance matrix):

两个随机变量的协方差矩阵是每个变量之间成对协方差计算的矩阵,

矩阵的协方差:

对于矩阵A,其列各自是由观察组成的随机变量,协方差矩阵是每个列组合之间的成对协方差计算。 换一种说法

方差:(这是赠送的)

对于由N个标量观测组成的随机变量向量A,方差定义为

其中u是A的均值:

一些方差定义使用归一化因子N而不是N-1,可以通过将w设置为1来指定。在任何一种情况下,假设均值具有通常的归一化因子N.

(注意:w是后面要说的MATLAB里面的协方差函数的一个参数而已,在具体的MATLAB函数里面可以通过设置w来指定归一化因子!)



MATLAB中的 cov

语法格式:

下面逐个讲解:

C = cov(A)

C = cov(A) returns the covariance.

C = cov(A)返回协方差。

  • If A is a vector of observations, C is the scalar-valued variance.

  • 如果A是一个观测向量,那么C是一个标量值的方差。

  • If A is a matrix whose columns represent random variables and whose rows represent observations, C is the covariance matrix with the corresponding column variances along the diagonal.

  • 如果A是矩阵,其列表示随机变量,其行表示观测值,则C是协方差矩阵,沿对角线具有相应的列方差。(协方差矩阵的协方差是列的协方差值)

  • C is normalized by the number of observations-1. If there is only one observation, it is normalized by 1.

  • C由观察数-1归一化。 如果只有一个观察值,则将其标准化为1。

  • If A is a scalar, cov(A) returns 0. If A is an empty array, cov(A)returns NaN.

  • 如果A是标量,则cov(A)返回0.如果A是空数组,则cov(A)返回NaN。

(你看看人家考虑的多周全!)


C = cov(A,B) 

C = cov(A,B) returns the covariance between two random variables A and B.

C = cov(A,B) 返回两个随机变量A和B之间协方差。

  • If A and B are vectors of observations with equal length, cov(A,B) is the 2-by-2 covariance matrix.

  • 如果A和B是同等长度的观测向量,那么C是一个2*2的协方差矩阵。

  • If A and B are matrices of observations, cov(A,B) treats A and B as vectors and is equivalent to cov(A(:),B(:))A and B must have equal size.

  • 如果A和B是观察矩阵,则cov(A,B)将A和B视为向量,并且等同于cov(A(:),B(:))。 A和B必须具有相同的大小。

  • If A and B are scalars, cov(A,B) returns a 2-by-2 block of zeros. If A and B are empty arrays, cov(A,B) returns a 2-by-2 block of NaN.

  • 如果A和B是标量,则cov(A,B)返回2乘2的零块。 如果A和B是空数组,则cov(A,B)返回2乘2的NaN块。


C = cov(___,w)

C = cov(___,w) specifies the normalization weight for any of the previous syntaxes. When w = 0 (default), C is normalized by the number of observations-1. When w = 1, it is normalized by the number of observations.

C = cov(___,w)指定任何先前语法的归一化权重。 当w = 0(默认值)时,C由观测数-1归一化。 当w = 1时,它通过观察次数归一化。


C = cov(___,nanflag)

C = cov(___,nanflag) specifies a condition for omitting NaN values from the calculation for any of the previous syntaxes. For example, cov(A,'omitrows') will omit any rows of A with one or more NaN elements.

C = cov(___,nanflag)指定从任何先前语法的计算中省略NaN值的条件。 例如,cov(A,'omitrows')将省略具有一个或多个NaN元素的A的任何行。


示例

下面举例说明重要的语法格式:

C = cov(A) 举例(矩阵的协方差)

Create a 3-by-4 matrix and compute its covariance

A = [5 0 3 7; 1 -5 7 3; 4 9 8 10];
C = cov(A)
C = 4×4

    4.3333    8.8333   -3.0000    5.6667
    8.8333   50.3333    6.5000   24.1667
   -3.0000    6.5000    7.0000    1.0000
    5.6667   24.1667    1.0000   12.3333

Since the number of columns of A is 4, the result is a 4-by-4 matrix.

由于矩阵A有4列,表示有4个随机变量,那么协方差矩阵是4*4的。


cov(A,B) 举例之两个向量之间的协方差

1. Create two vectors and compute their 2-by-2 covariance matrix.

A = [3 6 4];
B = [7 12 -9];
cov(A,B)
ans = 2×2

    2.3333    6.8333
    6.8333  120.3333

cov(A,B) 举例之两个矩阵之间的协方差

2. Create two matrices of the same size and compute their 2-by-2 covariance.

A = [2 0 -9; 3 4 1];
B = [5 2 6; -4 4 9];
cov(A,B)
ans = 2×2

   22.1667   -6.9333
   -6.9333   19.4667

这相当于求A(:)和B(:)的协方差,如下验证下:

【 MATLAB 】协方差 cov以及协方差矩阵基础知识_第1张图片

【 MATLAB 】协方差 cov以及协方差矩阵基础知识_第2张图片

【 MATLAB 】协方差 cov以及协方差矩阵基础知识_第3张图片

对比下cov(A,B)发现是一致的:

【 MATLAB 】协方差 cov以及协方差矩阵基础知识_第4张图片

Specify Normalization Weight

创建一个矩阵并计算由行数归一化的协方差。

A = [1 3 -7; 3 9 2; -5 4 6];
C = cov(A,1)
C = 3×3

   11.5556    5.1111  -10.2222
    5.1111    6.8889    5.2222
  -10.2222    5.2222   29.5556

我觉得还是有必要比较下不归一化的情况:

>> A = [1 3 -7; 3 9 2; -5 4 6]

A =

     1     3    -7
     3     9     2
    -5     4     6

>> C = cov(A,1)

C =

   11.5556    5.1111  -10.2222
    5.1111    6.8889    5.2222
  -10.2222    5.2222   29.5556

>> C = cov(A)

C =

   17.3333    7.6667  -15.3333
    7.6667   10.3333    7.8333
  -15.3333    7.8333   44.3333

Covariance Excluding NaN

创建矩阵并计算其协方差,排除包含NaN值的任何行。

A = [1.77 -0.005 3.98; NaN -2.95 NaN; 2.54 0.19 1.01]
A = 3×3

    1.7700   -0.0050    3.9800
       NaN   -2.9500       NaN
    2.5400    0.1900    1.0100

C = cov(A,'omitrows')
C = 3×3

    0.2964    0.0751   -1.1435
    0.0751    0.0190   -0.2896
   -1.1435   -0.2896    4.4104

 

 

 

你可能感兴趣的:(杂七杂八,#,区)