分布式主键 Leaf-snowflake

分布式主键 Leaf-snowflake_第1张图片

 

Leaf-snowflake方案完全沿用snowflake方案的bit位设计,即是“1+41+10+12”的方式组装ID号。对于workerID的分配,当服务集群数量较小的情况下,完全可以手动配置。Leaf服务规模较大,动手配置成本太高。所以使用Zookeeper持久顺序节点的特性自动对snowflake节点配置wokerID。Leaf-snowflake是按照下面几个步骤启动的:

  1. 启动Leaf-snowflake服务,连接Zookeeper,在leaf_forever父节点下检查自己是否已经注册过(是否有该顺序子节点)。
  2. 如果有注册过直接取回自己的workerID(zk顺序节点生成的int类型ID号),启动服务。
  3. 如果没有注册过,就在该父节点下面创建一个持久顺序节点,创建成功后取回顺序号当做自己的workerID号,启动服务。

分布式主键 Leaf-snowflake_第2张图片

image

 

弱依赖ZooKeeper

除了每次会去ZK拿数据以外,也会在本机文件系统上缓存一个workerID文件。当ZooKeeper出现问题,恰好机器出现问题需要重启时,能保证服务能够正常启动。这样做到了对三方组件的弱依赖。一定程度上提高了SLA

解决时钟问题

因为这种方案依赖时间,如果机器的时钟发生了回拨,那么就会有可能生成重复的ID号,需要解决时钟回退的问题。

分布式主键 Leaf-snowflake_第3张图片

image

 

参见上图整个启动流程图,服务启动时首先检查自己是否写过ZooKeeper leaf_forever节点:

  1. 若写过,则用自身系统时间与leaf_forever/${self}节点记录时间做比较,若小于leaf_forever/${self}时间则认为机器时间发生了大步长回拨,服务启动失败并报警。
  2. 若未写过,证明是新服务节点,直接创建持久节点leaf_forever/${self}并写入自身系统时间,接下来综合对比其余Leaf节点的系统时间来判断自身系统时间是否准确,具体做法是取leaf_temporary下的所有临时节点(所有运行中的Leaf-snowflake节点)的服务IP:Port,然后通过RPC请求得到所有节点的系统时间,计算sum(time)/nodeSize。
  3. 若abs( 系统时间-sum(time)/nodeSize ) < 阈值,认为当前系统时间准确,正常启动服务,同时写临时节点leaf_temporary/${self} 维持租约。
  4. 否则认为本机系统时间发生大步长偏移,启动失败并报警。
  5. 每隔一段时间(3s)上报自身系统时间写入leaf_forever/${self}。

由于强依赖时钟,对时间的要求比较敏感,在机器工作时NTP同步也会造成秒级别的回退,建议可以直接关闭NTP同步。要么在时钟回拨的时候直接不提供服务直接返回ERROR_CODE,等时钟追上即可。或者做一层重试,然后上报报警系统,更或者是发现有时钟回拨之后自动摘除本身节点并报警,如下:

 //发生了回拨,此刻时间小于上次发号时间
 if (timestamp < lastTimestamp) {
  			  
            long offset = lastTimestamp - timestamp;
            if (offset <= 5) { try { //时间偏差大小小于5ms,则等待两倍时间 wait(offset << 1);//wait timestamp = timeGen(); if (timestamp < lastTimestamp) { //还是小于,抛异常并上报 throwClockBackwardsEx(timestamp); } } catch (InterruptedException e) { throw e; } } else { //throw throwClockBackwardsEx(timestamp); } } //分配ID 

原文:https://tech.meituan.com/2017/04/21/mt-leaf.html

转载于:https://www.cnblogs.com/yx88/p/11285655.html

你可能感兴趣的:(分布式主键 Leaf-snowflake)