图像变换

图像变换

  • 包含内容:等距变换、相似变换、仿射变换、投影变换
  • 相关链接:
    • https://blog.csdn.net/raby_gyl/article/details/52780644
    • https://blog.csdn.net/KinboSong/article/details/64923831
    • https://blog.csdn.net/aiwoshan0908/article/details/80047529
    • https://blog.csdn.net/u014096352/article/details/53526747
    • 基于Landmark的人脸对齐以及裁剪方法
      • https://www.cnblogs.com/cv-pr/articles/5438351.html
    • 平均脸
      • https://blog.csdn.net/dzJx2EOtaA24Adr/article/details/78610166?utm_source=blogxgwz4
  • 求解相似变换矩阵、仿射变换矩阵的注释
    • icvGetRTMatrix函数详细注释:https://blog.csdn.net/xdfyoga1/article/details/44263271

相似变换原理及推导

  • 释义:相似变换是旋转、平移、缩放变换的组合,包含四个参数:缩放因子s,旋转角度 θ \theta θ,x方向平移   t x \ t_x  tx, y方向平移   t y \ t_y  ty
    • 变换矩阵为:
      ( x ′ y ′ ) \begin{pmatrix} x' \\ y' \\ \end{pmatrix} (xy) = ( s c o s ( θ ) s s i n ( θ ) t x − s s i n ( θ ) s c o s ( θ ) t y ) \begin{pmatrix} scos(\theta) &s sin(\theta) & t_x \\ -s sin(\theta) & scos(\theta) & t_y \\ \end{pmatrix} (scos(θ)ssin(θ)ssin(θ)scos(θ)txty) ( x y 1 ) \begin{pmatrix} x \\ y \\ 1 \\ \end{pmatrix} xy1 (1)
    • m 1 = s c o s ( θ ) m_1=scos(\theta) m1=scos(θ) m 2 = − s s i n ( θ ) m_2=-ssin(\theta) m2=ssin(θ) m 3 = t x m_3=t_x m3=tx m 4 = t y m_4=t_y m4=ty
    • x ′ = m 1 x − m 2 y + t x x'=m_1x-m_2y+t_x x=m1xm2y+tx, y ′ = m 1 y + m 2 x + t y y'=m_1y+m_2x+t_y y=m1y+m2x+ty
    • 相似变换矩阵有四个参数,实际上有两个点即可得出解,实际上可能由多个点,比如人脸关键点和标准关键点之间的相似变换矩阵求解,事实上,从原始点到目标点的变换矩阵为:
      ( x 1 − y 1 1 0 y 1 x 1 0 1 x 2 − y 2 1 0 y 2 x 2 0 1 . . . . . . . . . . . . ) \begin{pmatrix} x_1 & -y_1 & 1 & 0 \\ y_1 & x_1 & 0 & 1 \\ x_2 & -y_2 & 1 & 0 \\ y_2 & x_2 & 0 & 1 \\ ... & ... & ... & ... \\\end{pmatrix} x1y1x2y2...y1x1y2x2...1010...0101... ( m 1 m 2 m 3 m 4 ) \begin{pmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ \end{pmatrix} m1m2m3m4 = ( x 1 ′ y 1 ′ x 2 ′ y 2 ′ . . . ) \begin{pmatrix} x_1' \\ y_1' \\ x_2' \\ y_2' \\ ... \\ \end{pmatrix} x1y1x2y2... (2)
    • (2)式写成 A M = B AM=B AM=B,可得 A T A M = A T B A^TAM=A^TB ATAM=ATB,即可照函数icvGetRTMatrix的计算方法,转换为如下的形式:
      ( Σ x i 2 + y i 2 0 Σ x i Σ y i 0 Σ x i 2 + y i 2 − Σ y i Σ x i Σ x i − Σ y i 1 0 Σ y i Σ x i 0 1 ) \begin{pmatrix} \Sigma x_i^2+y_i^2 & 0 & \Sigma x_i & \Sigma y_i \\ 0 & \Sigma x_i^2+y_i^2 & -\Sigma y_i & \Sigma x_i \\ \Sigma x_i & -\Sigma y_i & 1 & 0 \\ \Sigma y_i & \Sigma x_i & 0 & 1 \\ \end{pmatrix} Σxi2+yi20ΣxiΣyi0Σxi2+yi2ΣyiΣxiΣxiΣyi10ΣyiΣxi01 ( m 1 m 2 m 3 m 4 ) \begin{pmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ \end{pmatrix} m1m2m3m4 = ( Σ x i x i ′ + y i y i ′ Σ x i y i ′ − x i ′ y i Σ x i ′ Σ y i ′ ) \begin{pmatrix} \Sigma x_ix_i' + y_iy_i' \\ \Sigma x_iy_i'-x_i'y_i \\ \Sigma x_i' \\ \Sigma y_i' \\ \end{pmatrix} Σxixi+yiyiΣxiyixiyiΣxiΣyi (3)
    • 其中第一行和第二行,分别是第三行和第四行乘以x或y,再求和所得
    • 则相似变换矩阵的四个参数可如下计算,即 M = ( A T A ) − 1 A T B M=(A^TA)^{-1}A^TB M=(ATA)1ATB
      ( m 1 m 2 m 3 m 4 ) \begin{pmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ \end{pmatrix} m1m2m3m4 = ( Σ x i 2 + y i 2 0 Σ x i Σ y i 0 Σ x i 2 + y i 2 − Σ y i Σ x i Σ x i − Σ y i 1 0 Σ y i Σ x i 0 1 ) − 1 \begin{pmatrix} \Sigma x_i^2+y_i^2 & 0 & \Sigma x_i & \Sigma y_i \\ 0 & \Sigma x_i^2+y_i^2 & -\Sigma y_i & \Sigma x_i \\ \Sigma x_i & -\Sigma y_i & 1 & 0 \\ \Sigma y_i & \Sigma x_i & 0 & 1 \\ \end{pmatrix}^{-1} Σxi2+yi20ΣxiΣyi0Σxi2+yi2ΣyiΣxiΣxiΣyi10ΣyiΣxi011 ( Σ x i x i ′ + y i y i ′ Σ x i y i ′ − x i ′ y i Σ x i ′ Σ y i ′ ) \begin{pmatrix} \Sigma x_ix_i' + y_iy_i' \\ \Sigma x_iy_i'-x_i'y_i \\ \Sigma x_i' \\ \Sigma y_i' \\ \end{pmatrix} Σxixi+yiyiΣxiyixiyiΣxiΣyi (4)
    • 公式(4)的中的逆矩阵可通过伴随矩阵方式计算,即 ( A T A ) − 1 = ( A T A ) ∗ ∣ A T A ∣ (A^TA)^{-1}=\frac{(A^TA)^{*}}{|A^TA|} (ATA)1=ATA(ATA)

双线性插值推导

  • 假设相似变换前像素坐标(u,v)处的像素值为pSrc(u,v), 相似变换后的像素值为pDst(u,v),双线性插值计算pDst(u,v)的步骤如下:
  • 对相似变换后的像素坐标取整:
    u 0 = ⌊ u t r a n s ⌋ u_0=⌊u_{trans} ⌋ u0=utrans
    v 0 = ⌊ v t r a n s ⌋ v_0=⌊v_{trans} ⌋ v0=vtrans
    u 1 = u 0 + 1 u_1=u_0+1 u1=u0+1
    v 1 = v 0 + 1 v_1=v_0+1 v1=v0+1
    d x = u t r a n s − u 0 , d y = v t r a n s − v 0 d_x=u_{trans}-u_0,d_y=v_{trans}-v_0 dx=utransu0,dy=vtransv0
  • 计算双线性插值的权值:
    ( w 1 = ( 1 − d x ) × ( 1 − d y ) , w 2 = d x × ( 1 − d y ) , w 3 = ( 1 − d x ) × d y , w 4 = d x × d y (w_1=(1-d_x )×(1-d_y ),w_2=d_x×(1-d_y ),w_3=(1-d_x )×d_y,w_4=d_x×d_y (w1=(1dx)×(1dy),w2=dx×(1dy),w3=(1dx)×dy,w4=dx×dy
  • 双线性插值计算pDst(u,v):
    p D s t ( u , v ) = w 1 × p S r c ( u 0 , v 0 ) + w 2 × p S r c ( u 1 , v 0 ) + w 3 × p S r c ( u 0 , v 1 ) + w 4 × p S r c ( u 1 , v 1 ) pDst(u,v)=w_1×pSrc(u_0,v_0 )+w_2×pSrc(u_1,v_0 )+w_3×pSrc(u_0,v_1 )+w_4×pSrc(u_1,v_1 ) pDst(u,v)=w1×pSrc(u0,v0)+w2×pSrc(u1,v0)+w3×pSrc(u0,v1)+w4×pSrc(u1,v1)
  • 双线性插值的另外一种形式:
    p D s t ( u , v ) = w 1 × p S r c ( u 0 , v 0 ) + w 2 × p S r c ( u 0 , v 1 ) + w 3 × p S r c ( u 1 , v 0 ) + w 4 × p S r c ( u 1 , v 1 ) pDst(u,v)=w_1×pSrc(u_0,v_0 )+w_2×pSrc(u_0,v_1 )+w_3×pSrc(u_1,v_0 )+w_4×pSrc(u_1,v_1 ) pDst(u,v)=w1×pSrc(u0,v0)+w2×pSrc(u0,v1)+w3×pSrc(u1,v0)+w4×pSrc(u1,v1)
    = ( 1 − d x ) × ( 1 − d y ) × p S r c ( u 0 , v 0 ) + d x × ( 1 − d y ) × p S r c ( u 0 , v 1 ) + ( 1 − d x ) × d y × p S r c ( u 1 , v 0 ) + d x × d y × p S r c ( u 1 , v 1 ) (1-d_x )×(1-d_y )×pSrc(u_0,v_0 )+d_x×(1-d_y )×pSrc(u_0,v_1 )+(1-d_x )×d_y×pSrc(u_1,v_0 )+d_x×d_y×pSrc(u_1,v_1 ) (1dx)×(1dy)×pSrc(u0,v0)+dx×(1dy)×pSrc(u0,v1)+(1dx)×dy×pSrc(u1,v0)+dx×dy×pSrc(u1,v1)
    = ( 1 − d y ) × [ ( 1 − d x ) × p S r c ( u 0 , v 0 ) + d x × p S r c ( u 0 , v 1 ) ] + d y × [ ( 1 − d x ) × p S r c ( u 1 , v 0 ) + d x × p S r c ( u 1 , v 1 ) ] (1-d_y )×[(1-d_x )×pSrc(u_0,v_0 )+d_x×pSrc(u_0,v_1 )]+d_y×[(1-d_x )×pSrc(u_1,v_0 )+d_x×pSrc(u_1,v_1 )] (1dy)×[(1dx)×pSrc(u0,v0)+dx×pSrc(u0,v1)]+dy×[(1dx)×pSrc(u1,v0)+dx×pSrc(u1,v1)]
    = ( 1 − d y ) × [ p S r c ( u 0 , v 0 ) + d x × ( p S r c ( u 0 , v 1 ) − p S r c ( u 0 , v 1 ) ) ] + d y × [ p S r c ( u 1 , v 0 ) + d x × ( p S r c ( u 1 , v 1 ) − p S r c ( u 1 , v 0 ) ) ] (1-d_y )×[pSrc(u_0,v_0 )+d_x×(pSrc(u_0,v_1 )-pSrc(u_0,v_1 ))]+d_y×[pSrc(u_1,v_0 )+d_x×(pSrc(u_1,v_1 )-pSrc(u_1,v_0 ))] (1dy)×[pSrc(u0,v0)+dx×(pSrc(u0,v1)pSrc(u0,v1))]+dy×[pSrc(u1,v0)+dx×(pSrc(u1,v1)pSrc(u1,v0))]
    • m t = p S r c ( u 0 , v 0 ) + d x × ( p S r c ( u 0 , v 1 ) − p S r c ( u 0 , v 1 ) ) m_t=pSrc(u_0,v_0 )+d_x×(pSrc(u_0,v_1 )-pSrc(u_0,v_1 )) mt=pSrc(u0,v0)+dx×(pSrc(u0,v1)pSrc(u0,v1)) m b = p S r c ( u 1 , v 0 ) + d x × ( p S r c ( u 1 , v 1 ) − p S r c ( u 1 , v 0 ) ) m_b=pSrc(u_1,v_0 )+d_x×(pSrc(u_1,v_1 )-pSrc(u_1,v_0 )) mb=pSrc(u1,v0)+dx×(pSrc(u1,v1)pSrc(u1,v0))
    • p D s t ( u , v ) = m t + ( m b + m t ) d y pDst(u,v)=m_t+(m_b+m_t)d_y pDst(u,v)=mt+(mb+mt)dy

你可能感兴趣的:(图像处理)