摩尔投票法

摩尔投票法

 

提问: 给定一个int型数组,找出该数组中出现次数最多的int值。

 

解决方案: 遍历该数组,统计每个int值出现次数,再遍历该集合,取出出现次数最大的int值。

 

这算是一个比较经典的解决办法,其中可能会用到Map来做统计。如果不使用Map,则时间复杂度会超过线性复杂度。除此之外,也没有什么特别好的办法。

 

今天在leetcode上遇到这样一道题目,

 

提问: 给定一个int型数组,找出该数组中出现次数大于数组长度一半的int值。

 

解决方案: 遍历该数组,统计每个int值出现次数,再遍历该集合,找出出现次数大于数组长度一半的int值。

 

同样的,该解决办法也要求使用Map,否则无法达到线性的时间复杂度。

 

那么对于这个问题,有没有什么不使用Map的线性算法呢?

 

答案就是今天我们要提到的摩尔投票法。利用该算法来解决这个问题,我们可以达到线性的时间复杂度以及常量级的空间复杂度。

 

首先我们注意到这样一个现象: 在任何数组中,出现次数大于该数组长度一半的值只能有一个

 

通过数学知识,我们可以证明它的正确性,但是这并不在我们这篇博客里涉及。

 

摩尔投票法的基本思想很简单,在每一轮投票过程中,从数组中找出一对不同的元素,将其从数组中删除。这样不断的删除直到无法再进行投票,如果数组为空,则没有任何元素出现的次数超过该数组长度的一半。如果只存在一种元素,那么这个元素则可能为目标元素。

 

那么有没有可能出现最后有两种或两种以上元素呢?根据定义,这是不可能的,因为如果出现这种情况,则代表我们可以继续一轮投票。因此,最终只能是剩下零个或一个元素。

 

在算法执行过程中,我们使用常量空间实时记录一个候选元素c以及其出现次数f(c),c即为当前阶段出现次数超过半数的元素。根据这样的定义,我们也可以将摩尔投票法看作是一种动态规划算法

 

程序开始之前,元素c为空,f(c)=0。遍历数组A:

 

* 如果f(c)为0,表示截至到当前子数组,并没有候选元素。也就是说之前的遍历过程中并没有找到超过半数的元素。那么,如果超过半数的元素c存在,那么c在剩下的子数组中,出现次数也一定超过半数。因此我们可以将原始问题转化为它的子问题。此时c赋值为当前元素, 同时f(c)=1。

* 如果当前元素A[i] == c, 那么f(c) += 1。(没有找到不同元素,只需要把相同元素累计起来)

* 如果当前元素A[i] != c,那么f(c) -= 1 (相当于删除1个c),不对A[i]做任何处理(相当于删除A[i])

 

如果遍历结束之后,f(c)不为0,则找到可能元素。

 

再次遍历一遍数组,记录c真正出现的次数,从而验证c是否真的出现了超过半数。上述算法的时间复杂度为O(n),而由于并不需要真的删除数组元素,我们也并不需要额外的空间来保存原始数组,空间复杂度为O(1)。

 

看java代码示例,为了保证每一步骤的清晰性,代码没有经过优化。

    /**
     * 算法基础:摩尔投票法
     * @param nums
     * @return
     */
    public int majorityElement(int[] nums) {

        int majority = -1;

        int count = 0;

        for (int num : nums) {
            if (count == 0) {
                majority = num;
                count++;
            } else {
                if (majority == num) {
                    count++;
                } else {
                    count--;
                }
            }
        }

        int counter = 0;
        if (count <= 0) {
            return -1;
        } else {
            for (int num : nums) {
                if (num == majority) counter ++;
            }
        }

        if (counter > nums.length / 2) {
            return majority;
        }

        return -1;
    }

 

其实这样的算法也可以衍生到其它频率的问题上,比如说,找出所有出现次数大于n/3的元素。同样可以以线性时间复杂度以及常量空间复杂度来实现。

 

 

 

你可能感兴趣的:(算法,java)