谈一谈分布式数据库的CAP原则

文章目录

  • 一、CAP原则引入
  • 二、为什么三个原则不能同时满足
    • 2.1 Partition tolerance
    • 2.2 Consistency
    • 2.3 Availability
    • 2.4 Consistency 和 Availability 的矛盾
  • 三、满足两种特性的三种情况
    • 3.1 CA without P,就不再是分布式数据库了
    • 3.2 CP without A,典型的分布式数据库
    • 3.3 AP wihtout C,放弃强一致性,保证最终一致性就好了
  • 四、BASE理论-构建一个具有最终一致性的分布式系统
    • 4.1 从需求到BASE理论
    • 4.2 BASE理论三要素
    • 4.3 一句话总结BASE理论
  • 五、小结

一、CAP原则引入

CAP 原则又称 CAP 定理,指的是在一个分布式系统中, Consistency(一致性)、 Availability(可用性)、Partition tolerance(分区容错性),三者不可得兼。

一致性(C)
在分布式系统中的所有数据备份,在同一时刻是否同样的值(等同于所有节点访问同一份最新的数据副本)。

可用性(A)
在集群中一部分节点故障后,集群整体是否还能响应客户端的读写请求(对数据更新具备高可用性)。

分区容忍性(P)
以实际效果而言,分区相当于对通信的时限要求。系统如果不能在时限内达成数据一致性,就意味着发生了分区的情况,必须就当前操作在 C 和 A 之间做出选择。

二、为什么三个原则不能同时满足

2.1 Partition tolerance

先看 Partition tolerance,中文叫做"分区容错"。

大多数分布式系统都分布在多个子网络。每个子网络就叫做一个区(partition)。分区容错的意思是,区间通信可能失败。比如,一台服务器放在中国,另一台服务器放在美国,这就是两个区,它们之间可能无法通信。

谈一谈分布式数据库的CAP原则_第1张图片

上图中,G1 和 G2 是两台跨区的服务器。G1 向 G2 发送一条消息,G2 可能无法收到。系统设计的时候,必须考虑到这种情况。

一般来说,分布式数据库中分区容错无法避免,因此可以认为分布式数据库中 CAP 的 P 总是成立。CAP 定理告诉我们,剩下的 C 和 A 无法同时做到。

2.2 Consistency

Consistency 中文叫做"一致性"。意思是,写操作之后的读操作,必须返回该值。举例来说,某条记录是 v0,用户向 G1 发起一个写操作,将其改为 v1。

谈一谈分布式数据库的CAP原则_第2张图片

接下来,用户的读操作就会得到 v1。这就叫一致性。

谈一谈分布式数据库的CAP原则_第3张图片

问题是,用户有可能向 G2 发起读操作,由于 G2 的值没有发生变化,因此返回的是 v0。G1 和 G2 读操作的结果不一致,这就不满足一致性了。

谈一谈分布式数据库的CAP原则_第4张图片
为了让 G2 也能变为 v1,就要在 G1 写操作的时候,让 G1 向 G2 发送一条消息,要求 G2 也改成 v1。

谈一谈分布式数据库的CAP原则_第5张图片

这样的话,用户向 G2 发起读操作,也能得到 v1。

谈一谈分布式数据库的CAP原则_第6张图片

2.3 Availability

Availability 中文叫做"可用性",意思是只要收到用户的请求,服务器就必须给出回应。

用户可以选择向 G1 或 G2 发起读操作。不管是哪台服务器,只要收到请求,就必须告诉用户,到底是 v0 还是 v1,否则就不满足可用性。

2.4 Consistency 和 Availability 的矛盾

一致性和可用性,为什么不可能同时成立?答案很简单,因为可能通信失败(即出现分区容错)。

如果保证 G2 的一致性,那么 G1 必须在写操作时,锁定 G2 的读操作和写操作。只有数据同步后,才能重新开放读写。锁定期间,G2 不能读写,用户此时访问G2的时候必须等待,没有可用性不。

如果保证 G2 的可用性,那么势必不能锁定 G2,所以一致性不成立。

综上所述,G2 无法同时做到一致性和可用性。系统设计时只能选择一个目标。如果追求一致性,那么无法保证所有节点的可用性;如果追求所有节点的可用性,那就没法做到一致性。

三、满足两种特性的三种情况

CAP三个特性只能满足其中两个,那么取舍的策略就共有三种:

3.1 CA without P,就不再是分布式数据库了

CA without P,就不再是分布式数据库了:如果不要求P(不允许分区),则C(强一致性)和A(可用性)是可以保证的。但放弃P的同时也就意味着放弃了系统的扩展性,也就是分布式节点受限,没办法部署子节点,这是违背分布式系统设计的初衷的。传统的关系型数据库RDBMS:Oracle、MySQL就是CA。

3.2 CP without A,典型的分布式数据库

CP without A:如果不要求A(可用),相当于每个请求都需要在服务器之间保持强一致,而P(分区)会导致同步时间无限延长(也就是等待数据同步完才能正常访问服务),一旦发生网络故障或者消息丢失等情况,就要牺牲用户的体验,等待所有数据全部一致了之后再让用户访问系统。设计成CP的系统其实不少,最典型的就是分布式数据库,如Redis、HBase等。对于这些分布式数据库来说,数据的一致性是最基本的要求,因为如果连这个标准都达不到,那么直接采用关系型数据库就好,没必要再浪费资源来部署分布式数据库。

3.3 AP wihtout C,放弃强一致性,保证最终一致性就好了

AP wihtout C:要高可用并允许分区,则需放弃一致性。一旦分区发生,节点之间可能会失去联系,为了高可用,每个节点只能用本地数据提供服务,而这样会导致全局数据的不一致性。典型的应用就如某米的抢购手机场景,可能前几秒你浏览商品的时候页面提示是有库存的,当你选择完商品准备下单的时候,系统提示你下单失败,商品已售完。这其实就是先在 A(可用性)方面保证系统可以正常的服务,然后在数据的一致性方面做了些牺牲,虽然多少会影响一些用户体验,但也不至于造成用户购物流程的严重阻塞。

四、BASE理论-构建一个具有最终一致性的分布式系统

4.1 从需求到BASE理论

与传统事务的ACID特性的强一致性模型不同,在面对大型高可用可扩展的分布式系统时,使用BASE原理,通过牺牲强一致性来获得可用性,并允许数据在一段时间内是不一致的,只要最终达到一致状态就好了

BASE是Basically Available(基本可用)、Soft state(软状态)和Eventually consistent(最终一致性)三个短语的简写,BASE是对CAP中一致性和可用性权衡的结果,其来源于对大规模互联网系统分布式实践的结论,是基于CAP定理逐步演化而来的,其核心思想是即使无法做到强一致性(Strong consistency),但每个应用都可以根据自身的业务特点,采用适当的方式来使系统达到最终一致性(Eventual consistency)。

4.2 BASE理论三要素

1、基本可用

基本可用在可用前面加了“基本”两个字,是指分布式系统在出现不可预知故障(一般是网络故障)的时候,允许损失部分可用性——但请注意,这绝不等价于系统不可用,以下两个就是“基本可用”的典型例子。

响应时间上的损失-网络延迟:正常情况下,一个在线搜索引擎需要0.5秒内返回给用户相应的查询结果,但由于出现异常(比如系统部分机房发生断电或断网故障),查询结果的响应时间增加到了1~2秒。
功能上的损失-导航到其他页面:正常情况下,在一个电子商务网站上进行购物,消费者几乎能够顺利地完成每一笔订单,但是在一些节日大促购物高峰的时候,由于消费者的购物行为激增,为了保护购物系统的稳定性,部分消费者可能会被引导到一个降级页面。

2、弱状态

弱状态也称为软状态,和硬状态相对,是指允许系统中的数据存在中间状态,并认为该中间状态不会影响系统整体可用性,即允许系统不同节点的数据副本之间进行同步的过程存在时延。就好比是使用支付宝的时候,会出现支付中、数据同步中等状态,这时候就叫做软状态。但是最终会显示支付成功。

3、最终一致性

最终一致性强调的是系统中所有的数据副本,在经过一段时间的同步后,最终能够达到一个一致的状态。因此,最终一致性的本质是需要系统保证最终数据能够达到一致,而不需要实时保证系统数据的强一致性。

注意:实际上,最终一致性时一种特殊的弱一致性:系统能够保证在没有其他新的更新操作的情况下,数据最终一定能够达到一致的状态,因此所有客户端对系统的数据访问都能够胡渠道最新的值。同时,在没有发生故障的前提下,数据达到一致状态的时间延迟,取决于网络延迟,系统负载和数据复制方案设计等因素。

在实际工程实践中,最终一致性存在以下五类主要变种。

因果一致性:

因果一致性是指,如果进程A在更新完某个数据项后通知了进程B,那么进程B之后对该数据项的访问都应该能够获取到进程A更新后的最新值,并且如果进程B要对该数据项进行更新操作的话,务必基于进程A更新后的最新值,即不能发生丢失更新情况。与此同时,与进程A无因果关系的进程C的数据访问则没有这样的限制。

读己之所写:

读己之所写是指,进程A更新一个数据项之后,它自己总是能够访问到更新过的最新值,而不会看到旧值。也就是说,对于单个数据获取者而言,其读取到的数据一定不会比自己上次写入的值旧。因此,读己之所写也可以看作是一种特殊的因果一致性。

会话一致性:

会话一致性将对系统数据的访问过程框定在了一个会话当中:系统能保证在同一个有效的会话中实现“读己之所写”的一致性,也就是说,执行更新操作之后,客户端能够在同一个会话中始终读取到该数据项的最新值。

单调读一致性:

单调读一致性是指如果一个进程从系统中读取出一个数据项的某个值后,那么系统对于该进程后续的任何数据访问都不应该返回更旧的值。

单调写一致性:

单调写一致性是指,一个系统需要能够保证来自同一个进程的写操作被顺序地执行。

4.3 一句话总结BASE理论

因为CAP无法同时满足,因为是分布式系统,所以P是一定要的,C和A两个都不能放弃都又不能同时得到,所以C和A都是退而求其次,对于C,强一致性变成了最终一致性(一种特殊的弱一致性),对于A,实时可用性变成了基本可用和软状态,就是承认了网络延迟及其中间等待状态的合理性。

五、小结

现如今,对于多数大型互联网应用的场景,主机众多、部署分散,而且现在的集群规模越来越大,节点只会越来越多,所以节点故障、网络故障是常态,因此分区容错性也就成为了一个分布式系统必然要面对的问题。那么就只能在C和A之间进行取舍。但对于传统的项目就可能有所不同,拿银行的转账系统来说,涉及到金钱的对于数据一致性不能做出一丝的让步,C必须保证,出现网络故障的话,宁可停止服务,可以在A和P之间做取舍。

总而言之,没有最好的策略,好的系统应该是根据业务场景来进行架构设计的,只有适合的才是最好的。

参考:http://www.ruanyifeng.com/blog/2018/07/cap.html

更多精彩可关注笔者的微信公众号啊!!!
在这里插入图片描述

你可能感兴趣的:(数据库/Linux)