21:48 2013-3-19 星期二
the art of electronics chapter 1 done!
LCA == Lumped Circuit Abstraction
LMD == Lumped Matter Discipline
"I'm going to discipline myself..."
22:36 2013-3-19
6.002(circuits) lec 1 done!
/////////////////////////////////////////
19:12 2013-3-20 星期三
method 1: KVL, KCL
element v-i
KVL for all loops
KCL for all nodes...
19:14 2013-3-20
associated variable discipline
method 2: intuitive method
method 3: node method
1. select ground node
2. label node voltage
3. apply KCL for each node
6.002 has prerequisite: 8.02, 18.03(diff eqs)
LMD playground..
20:04 2013-3-20
2 methods which only apply to "linear circuits"!
superposition
Thevenin
20:26 2013-3-20
??????????????????
superposition for "dependent source"?
20:50 2013-3-20
Thevenin method:
linear network...
1.open circuit voltage
2.short circuit current
use "superposition"!
21:02 2013-3-20
Thevenin equivalent........
21:25 2013-3-20
How to derive Thevenin method?
1. assume linear network
2. abstract with box, apply current source!
3. apply superposition!
21:34 2013-3-20
How to find thevenin resistance?
zero all indepent source(open voltage source, short current source)
then measure the resistance!
this implies "linear"! (apply only the outer current source)
21:37 2013-3-20
Why measure open circuit voltage?
again because linear!
zero outer current(open), measure voltage!
V = Vth + Ri (linear)
21:49 2013-3-20
go digital!
LMD == Lump Matter Discipline
LCA == Lump Circuit Abstraction
22:02 2013-3-20
ASP == Analog Signal Processing
22:05 2013-3-20
"noise is a fact of life!"
"value discretization"
22:07 2013-3-20
Why digitial?
"noise immunity"
"noise margin"
22:17 2013-3-20
How to design "noise margin"?
"no mans land" <-> forbidden region
22:19 2013-3-20
Vh == High threshold
Vl == Low threshold
22:21 2013-3-20
"I'm going to discipline myself to play in this playground!"
22:30 2013-3-20
the real meaning of "noise margin"?
VOH, VOL, VIH, VIL
VIL - VOL, VOH - VIH
22:34 2013-3-20
NM == Noise margin
22:39 2013-3-20
static discipline
NM reflects tolerance of noise!
22:45 2013-3-20
combinational gate
boolean algebra
TT == truth table
23:00 2013-3-20
6.002 lec4 done!
///////////////////////////////////////////////////////////////
18:56 2013-3-21
static discipline
NAND gate
inverter
mix signal circuit
digital gate -> switch(control, input, output)
????????????????????????????????
20:14 2013-3-21
last see 6.002, 2008, now 2013
NOR
switch -> input, output, control(MOSFET)
20:32 2013-3-21
MOSFET
D, G, S
D == Drain
G == Gate
S == Source
VGS, VDS
IG == 0, iDS
S(Switch) model of the MOSFET
21:05 2013-3-21
digital circuits are essentially nonlinear
but can be linearized by fix the switch settings...
21:08 2013-3-21
LCA == Linear + nonlinear
KVL, KCL, node analysis, composition
Linear:
superposition, thevenin, norton
Nonlinear:
??? can be transformed to linear by fix switch setting...
digital circuits are essentially nonlinar!(just see their nonlinar
transfer function!)
21:11 2013-3-21
then how to analyze nonlinear circuits?
1. analytical
2. graphical
3. piecewise linear model
4. incremental analysis(small signal analysis)
21:32 2013-3-21
suddenly can not recall how to derive Thevenin's law?
//////////////////////////////////////////////////////////////
21:18 2013-3-22
lec5 -> go inside the digital gate
static discipline: analog to digital..
21:25 2013-3-22
NAND gate
21:40 2013-3-22
faucet(tap) as switch,,,,,,,
switch
transistor as a switch...
21:43 2013-3-22
transistor as a 3-terminal switch: control, input, output
21:51 2013-3-22
inverter implemented with a transistor...
22:05 2013-3-22
short <-> open.....
NOR gate....
22:18 2013-3-22
MOSFET
22:23 2013-3-22
Switch model of the MOSFET
also "S model of the MOSFET"
22:25 2013-3-22
just like a faucet!
VGS > VTH, short circuit!
VGS < VTH, open circuit!
22:47 2013-3-22
6.002 lec5 done!
23:17 2013-3-22
nonlinear analysis
because LCA includes both "linear" & "nonlinear"
KVL, KCL, node analysis still hold for nonlinear circuit,
but superposition & Thevenin does not hold for nonlinear circuit..
23:20 2013-3-22
How to analyze nonlinear circuit?
1. analytic
2. graphic
3. piecewise-linear model
4. incremental analysis(small signal)
23:22 2013-3-22
NLD == Non-Linear Device
23:31 2013-3-22
Thevenin Equivalent(or Norton Equivalent)
23:38 2013-3-22
"playground": LCA, linear, nonlinear etc...
23:43 2013-3-22
graphic analysis:
superimpose these 2 curves, and find the intersection!
23:43 2013-3-22
load line
23:45 2013-3-22
piecewise linear technique
23:50 2013-3-22
PR == Photo Resistance
23:52 2013-3-22
incremental analysis(small signal analysis)
23:52 2013-3-22
why incremental?
sender: LED
receiver: PR
distortion?
23:59 2013-3-22
LED is a NLD! VI, ID
0:04 2013-3-23
input, distorted output
////////////////////////////////////////////
9:37 2013-3-23 星期六
incremental analysis...
9:43 2013-3-23
superimpose AC signal(small signal) + DC offset........
boost & shrink
boost using DC offset
9:47 2013-3-23
bump my signal up & shrink it!
9:52 2013-3-23
key: why incremental analysis(small signal)?
by shrink the signal small, only map to small portion
of the transfer function(transfer curve), thus approximate
linear transfer characteristic!
9:55 2013-3-23
big aha moment!
9:56 2013-3-23
total signal == DC offset + small signal
10:02 2013-3-23
small signal model
1. operate at some DC offset(DC bias)
2. superimpose a small signal
3. observe response....
10:03 2013-3-23
dc offset == dc bias
10:14 2013-3-23
essense of incremental analysis:
Taylor's series expansion
omit all higher order terms: f(x) == f(x0) + slope at x = x0 * delta
tangent line approximation........
10:27 2013-3-23
input excursion & output excursion are linearly related
10:30 2013-3-23
dc bias point...
10:31 2013-3-23
the essense of small signal analysis:
linear approximation....
10:44 2013-3-23
lec 7(incremental analysis) done!
------------------------------------------------------------------------------------------
10:52 2013-3-23
start lec8: dependent source & amplifier
10:53 2013-3-23
node method:
when in doubt, using node method, which applies
both to linear & nonlinear circuits...
10:58 2013-3-23
voltage swing
power gain(compare: voltage gain, current gain)!
power port
13:01 2013-3-23
small variation, small regime....(nonlinear -> linear)
13:07 2013-3-23
dependent source & amplifier
13:07 2013-3-23
PP == Power Port
13:14 2013-3-23
LNA == Low Noise Amplifier
13:18 2013-3-23
digital & amplify "to attack noise"
13:19 2013-3-23
analog signal -> amplify -> digitize
13:20 2013-3-23
static discipline
VIH, VIL, VOH, VOL
13:22 2013-3-23
output standard must be stricter than that of input!
13:26 2013-3-23
digital system must has amplification built into it, why?
because: must meet "minimum amplification" == (VOH - VOL) / (VIH - VIL)
13:29 2013-3-23
mixed-signal circuit
13:38 2013-3-23
dependent source: control port, output port
13:41 2013-3-23
VCCS == Voltage Controlled Current Source
CCCS == Current Controlled Current Source
13:47 2013-3-23
CS == Current Source
13:53 2013-3-23
the workhorse of the circuit industry: node analysis
14:15 2013-3-23
see MOSFET as VCCS(Voltage Controlled Current Source),
then we got an amplifier!
because (delta VO / delta VI) > 1
14:26 2013-3-23
the model breaks down..
----------------------------------------------------------------------------------
15:19 2013-3-23
start lec9 MOSFET amplifier
dependent source -> amplifier
15:21 2013-3-23
How to deal with "dependent source" when using superposition?
ans: just leave them as it is...
deal with independent source one each time!
15:26 2013-3-23
dependent source amplifier: MOSFET amplifier
dependent source: control port, output port
key: IDS = F(VGS)
15:33 2013-3-23
MOSFET as a VCCS(Voltage Controlled Current Source)
15:34 2013-3-23
3-terminal device
15:39 2013-3-23
when VGS < VT(threshold voltage), the switch is open
15:40 2013-3-23
SR model of the MOSFET: when VGS > VT, view switch as "resistor"
S model of the MOSFET: when VGS > VT, view switch as "short circuit"
15:47 2013-3-23
plot(picture) of MOSFET:
x axis == VDS
y axis == IDS
every VGS determine a single curve, there are many curves(since many different VGS)
15:53 2013-3-23
if VGS > VT, what does happen if VDS continues to grow?
ans: IDS stops grow linearly with VDS, instead, it gradually bends,
approximate some limit, thus shows "current source" behavior.
15:56 2013-3-23
that's what called "saturatation"
SR model breaks down!
15:58 2013-3-23
SCS model of MOSFET
SCS == Switch Current Source, when
1. VGS > VT // MOSFET is ON
2. VDS >= (VGS - VT) // MOSFET saturates, the regional behavior, just like a "current source"
16:05 2013-3-23
What's the relationship between SR model & SCS model?
if VGS > VT, then MOSFET is ON,
1. if VDS < (VGS - VT), MOSFET behaves like a "resistance"
// ramp
2. else VDS > (VGS -VT), MOSFET behaves like a "current source"
// horizontal
16:10 2013-3-23
saturation region
triode region
16:13 2013-3-23
resistance like behavior // VDS < (VDS -VT)
current source like behavior // VDS > (VGS - VT)
16:18 2013-3-23
When to use SR model & SCS model?
digital design: use SR model
// Switch Resistance
analog design(amplifier etc): using SCS model
// Switch Current Source
16:52 2013-3-23
How to analyze MOS AMP?
ans: when use MOSFET as Amplifier, use SCS model(Switch Current Source)
with "saturation discipline", it's easy to solve:
VGS > VT // MOSFET is ON
assume VDS > (VGS - VT), saturation
VGS -> IDS -> VDS
16:55 2013-3-23
when deal with MOS AMP, use "current source" model // SCS model
-------------------------------------------
16:59 2013-3-23
MOSFET in saturation, if
1. VGS > VT // MOSFET is ON
2. VDS > (VGS - VT) // MOSFET in saturation
then we can use VCCS model for MOSFET,
control port: VGS(VIN)
17:08 2013-3-23
What's a "saturation discipline"?
1. VGS > VT
2. VDS > (VGS - VT)
17:17 2013-3-23
load line
17:18 2013-3-23
operating point
--------------------------------------------------
21:38 2013-3-23
larget signal analysis
BJT == Bipolar Junction Transistor
21:41 2013-3-23
operating points
21:43 2013-3-23
saturation region
21:47 2013-3-23
large signal analysis:
1. VO vs VI
2. find valid input operating range
21:54 2013-3-23
valid operating range
valid input operating range -> valid output operating range
find throught VI, VO relationship
22:19 2013-3-23
transfer function
using saturation constraints to derive "valid operating range"
VI > VT
VO > (VI - VT) // plot in transfer function(VI <-> VO)
22:22 2013-3-23
bounding point of such regime(operating regime)
22:23 2013-3-23
corresponding output range
22:24 2013-3-23
transfer curve
22:24 2013-3-23
transfer function
22:25 2013-3-23
triode region
22:27 2013-3-23
loadline characteristic
22:29 2013-3-23
loadline graph(VDS <-> IDS)
22:30 2013-3-23
saturation constraint: VGS > VT, VDS > VGS - VT
22:31 2013-3-23
triode region + saturation region
22:32 2013-3-23
loadline equation
22:34 2013-3-23
graph method can intuitively determine the operating range!
using loadline superimposed
22:48 2013-3-23
transfer people vs loadline people
22:57 2013-3-23
boost the signal to go in valid input operating range.....
22:59 2013-3-23
overdrive the input
//////////////////////////////////////////////////////////////////////////
10:16 2013-3-24 星期天
review lec8
dependent source & amplifier
10:29 2013-3-24
why amplify?
1. amplify signal to get better noise immunity
10:34 2013-3-245
LNA == Low Noise Amplifier
10:39 2013-3-24
amplification is fundamental to the digital domain,
because (VOH - VOL) > (VIH - VIL)
that is the NM(Noise Margin)
10:40 2013-3-24
static discipline:
VIH, VIL, VOL, VOH
10:45 2013-3-24
output requirement is tuffer(stricter) than the input ones!
10:49 2013-3-24
low noise high gain amplifier
10:49 2013-3-24
input stage
10:52 2013-3-24
dependent source: control port, output port
10:54 2013-3-24
VCCS == Voltage Controlled Current Source
10:56 2013-3-24
"output current" is controlled by "input voltage"
10:58 2013-3-24
drop across thr resistor
10:59 2013-3-24
CS == Current Source
independent CS, dependent CS
11:08 2013-3-24
the control port input impedance is infinite,
it does not affect the circuit in anyway...
11:11 2013-3-24
transfer function(transfer characteristic):
VO vs VI
11:13 2013-3-24
RL // Load Resistance
11:21 2013-3-24
if I can find a region of the curve which has delta VO > delta VI,
then it amplifies!
11:25 2013-3-24
linear amplifier + nonlinear amplifier
11:29 2013-3-24
How can you see amplification from the transfer function?
small input variation -> big output variation // steep transfer behavior
11:31 2013-3-24
transfer characteristic
VO = f(VI)
11:33 2013-3-24
passive device: which can not produce power
11:37 2013-3-24
as VI increases, the device stops behaving like a "dependent source",
and the model breaks down
------------------------------------------------
16:16 2013-3-24
MOSFET amplifier
16:17 2013-3-24
build an amplifier with an independent source
16:18 2013-3-24
terminal pair(port)
16:23 2013-3-24
control port of the dependent source
16:23 2013-3-24
does not draw any current like that....(IG == 0)
16:25 2013-3-24
drop across the resistor
16:32 2013-3-24
threshold voltage VT
16:44 2013-3-24
plot IDS vs VDS........
16:46 2013-3-24
MOSFET model:
1. S model (Switch)
2. SR model (Switch Resistance) // when VDS is small, triode region
16:51 2013-3-24
How to plot MOSFET behavior?
1. fix some VGS
2. plot IDS <-> VDS
16:52 2013-3-24
What does saturate mean?
if VGS > VT, MOSFET is operating,
normally(triode region) IDS is proportion to VDS,
but when VDS > VGS - VT, IDS stops increasing as VDS increase,
thus MOSFET saturates, it behaves like a "current source"
16:54 2013-3-24
"I give up!" // saturates, VDS is too big, IDS gives up!
16:56 2013-3-24
large signal analysis
16:59 2013-3-24
when saturates, MOSFET behaves like a "current source",
the curve is horizontal // IDS approaches constant, VDS is irrevalent!
17:02 2013-3-24
MOSFET as an amplifier:
1. VGS > VT // MOSFET IS ON
2. VDS > VGS - VT // MOSFET SATURATES
17:04 2013-3-24
the different between SR MODEL & SCS MODEL?
SR MODEL <-> triode region
SCS MODEL <-> saturation region
17:08 2013-3-24
How does MOSFET operate?
1. if VGS < VT, MOSFET IS OFF
2. else VGS > VT, MOSFET IS ON
2.1 IF VDS < VGS - VT, triode region, SR model, "resistor"
2.2 ELSE VDS > VGS - VT, saturation region, SCS model, "current source"
17:11 2013-3-24
triode region & saturation region........
17:13 2013-3-24
resistor behavior & current source behavior
17:21 2013-3-24
When to use SR model, SCS model?
1st, it must be met that:
VGS > VT // MOSFET IS ON
1. VDS < VGS - VT, use SR model // because in triode region
2. VDS > VGS - VT, use SCS model // because in saturation region
17:24 2013-3-24
operating MOSFET in a saturation region......
17:25 2013-3-24
What's the difference between using MOSFET in ANALOG & DIGITAL?
DIGITAL: in triode region, use SR model
ANALOG: use MOSFET as amplifier etc, in saturation region, use SCS model
17:28 2013-3-24
saturation discipline.....
17:29 2013-3-24
primitive inverter circuit
17:30 2013-3-24
generally speaking
triode region: VDS is small
saturation region: VDS is big // VDS compared with (VGS - VT)
17:31 2013-3-24
for amplication, let's follow the saturaton discipline!
17:33 2013-3-24
linear region == triode region
17:33 2013-3-24
How to analyze MOSFET circuit?
if amplification, use "saturation discipline",
replace MOSFET with "SCS model" // current source
17:35 2013-3-24
current source model applies // SCS model
17:37 2013-3-24
assumes the MOSFET is in saturation!
17:42 2013-3-24
How to analyze MOS AMP?
assume MOSFET operates in saturation region,
then IDS is irrelevant with VDS(because current source behavior),
thus IDS is solely determined by VGS!
then MOSFET can be viewed as "VCCS"!
control port: VGS
output port: IDS
replace MOSFET with VCCS(Voltage Controlled Current Source)!
MOSFET becomes a "dependent source"!
17:47 2013-3-24
We are operating under the "saturation discipline"!
17:48 2013-3-24
How to deal with "nonlinear circuits"?
1. generally by using KVL, KCL, nodal analysis
// these method applies disregard of linearity
2. "analytical method" or "graphical method" // may be "loadline"?
17:55 2013-3-24
the condition under which it applies is the "saturation discipline"
17:59 2013-3-24
SAT == Saturation
18:00 2013-3-24
What is a graphical analysis method?
plot both linear & nonlinear part of circuit together:
means to superimpose these 2 parts,
then the "intersection" is the "operating point" of the circuit
18:02 2013-3-24
loadline: curve of the linear part of circuit
18:04 2013-3-24
device characteristic // e.g. IDS = f(VDS), VGS...
18:05 2013-3-24
What is a large-signal analysis?
given a device characteristic,
how to figure out the boundary of the valid operation
so that the MOSFET stays in saturation?
18:06 2013-3-24
operating point of the MOSFET // VDS, IDS, VGS
------------------------------------
boundary of the valid operation
------------------------------------
18:10 2013-3-24
lec9 review done!
/////////////////////////////////////////////////////////////////
19:27 2013-3-25
large signal analysis:
find the conditions under which MOSFET always work
in saturation.
19:57 2013-3-25
1. plot transfer graph
2. using saturation discipline to find proper region:
VGS > VT, VDS > VGS - VT
3. got input operating range, output operating range
saturation can always be ensured in this operating range
20:14 2013-3-25
Can you see "cutoff region", "saturation region", "triode region"
from transfer graph?
------------------------------------------------------------
20:44 2013-3-25
lec10 amplifier: small signal analysis
20:51 2013-3-25
saturation discipline
20:53 2013-3-25
the main reason why "large signal analysis"?
find the operating range under which the "saturation discipline"
holds.....
20:57 2013-3-25
Why small-signal analysis?
because the saturation region of the transfer function is not perfect linear,
just see the transfer graph(saturation region) of MOSFET amplifier!
you got a nonlinear amplifier!
but actually you want a linear amplifier!
solution: small signal
21:07 2013-3-25
operating point: VI, VO, IDS
21:17 2013-3-25
DC bias point
21:17 2013-3-25
large signal response // nonlinear
small signal response // linear
21:21 2013-3-25
How to use a small signal?
1. determine proper "operating point" // DC bias point
2. shrink the signal & boost it!
21:25 2013-3-25
bias point == operating point
21:34 2013-3-25
total variable = DC bias(operating voltage) + small signal input(incremental input)
21:37 2013-3-25
We'are engineers, let's see how we can simplify our lives!
21:41 2013-3-25
vi << VI // small signal
21:50 2013-3-25
operating point
21:53 2013-3-25
ss == small signal
21:56 2013-3-25
the essense of small signal analysis:
linear approximation at operating point
21:59 2013-3-25
How to choose the bias point?
1. gain // proportional to VI, RL
2. distortion range
3. valid input range
-------------------------------------------
22:17 2013-3-25
find slope of the function at the operating point....
22:21 2013-3-25
total variable == DC bias + small signal
22:21 2013-3-25
output vs input relationship // transfer function
22:23 2013-3-25
assume vi << VI, then omit vi * vi,
got vo == A * vi // linear relationship
22:25 2013-3-25
superimpose a loadline on the device characteristic!
graphical analysis
22:26 2013-3-25
Why solve the intersection of loadline & device characteristic?
think it as we solve "system of equation",
both equation must be satisfied
22:27 2013-3-25
What does the intersection mean?
operating point: VI(VGS), VO(VDS), IDS
22:31 2013-3-25
How do we choose bias point?
1. gain // VI increase -> gain increase
2. input swing range
22:49 2013-3-25
increase bias voltage -> increase gain
22:57 2013-3-25
small signal equivalent
large signal equivalent
22:58 2013-3-25
just replace LS model with SS model, then from nonlinear circuit
we got linear circuit!
23:00 2013-3-25
input loop, output loop
KVL of input loop
KVL of output loop
KCL of IDS etc.........
23:02 2013-3-25
quiescent point
23:07 2013-3-25
small signal circuit model
1. find bias point using LS model
2. develop SS model of my element..
3. replace
23:09 2013-3-25
LS model of MOSFET
23:10 2013-3-25
How to find SS model from LS model?
y = f(x), just find
delta y = ff(delta x) // SS model
23:13 2013-3-25
the SS model of MOSFET is linear VCCS
the LS model of MOSFET is nonlinear VCCS
23:14 2013-3-25
ids = Gm * vgs // Gm transconductance
23:29 2013-3-25
lec11 done!
///////////////////////////////////////////////////////////////
21:07 2013-3-26 星期二
22:03 2013-3-26
lec13, capacitors & first-order circuits
22:52 2013-3-26
paticular solution
homogeneous solution
constant
23:16 2013-3-26
lec13 Digital circuit speed.
/////////////////////////////////////////////////
20:08 2013-3-27 星期三
lec13 Digital Circuit Speed......
RC dealy
Cgs.........
20:27 2013-3-27
rising delay....
20:42 2013-3-27
falling decay
20:56 2013-3-27
just do the RC
20:56 2013-3-27
Tr == rising time
proportional to Rl * Cgs
Tf == falling time
21:00 2013-3-27
If I decrease RL, then got sharp rising?
but disaster may happen!
close pin may form capacitor!
this is called "crosstalk"
slower may be better!
21:07 2013-3-27
state & memory lec14
DRAM == Dynamic Random Access Memory
21:22 2013-3-27
ZIR == Zero Input Response
ZSR == Zero State Response
21:34 2013-3-27
total response == ZIR + ZSR
21:34 2013-3-27
combination logic + memory
22:08 2013-3-27
SRAM == Static RAM
////////////////////////////////////////////////
19:29 2013-3-28 星期四
state & memory
20:05 2013-3-28
basic memory element
20:08 2013-3-28
store(charge), discharge
20:09 2013-3-28
discharge == decaying exponential
charge == growing exponential.......
20:29 2013-3-28
2nd order system.......
//////////////////////////////////////////////////////
22:49 2013-3-29 星期五
back from internet bar.....
2nd order system
///////////////////////////////////////////////////////////
8:25 2013-3-30 星期六
start lec15
13:36 2013-3-30 星期天
SSS == Sinusoidal Steady State
15:22 2013-3-30
lec18 filters
15:42 2013-3-30
LPF == Low Pass Filters
///////////////////////////////////////////////////
12:02 2013-3-31 星期天
lec19 op-amp, feedback done!
19:38 2013-3-31
lec21 op-amp positive feedback done!
20:06 2013-3-31
op-amp as VCVS(Voltage Controlled Voltage Source)
20:07 2013-3-31
inverting terminal(negative feedback)
non-inverting terminal(positive feedback)
20:10 2013-3-31
static view of the circuit.......
20:14 2013-3-31
dynamics of op-amp........
20:18 2013-3-31
when deal with positive feedback op-amp,
use the dynamic model with 2 dependent source......
20:20 2013-3-31
perturb the output a little bit.......(some noise)
20:42 2013-3-31
basic comparator(open loop)
20:43 2013-3-31
transfer characteristic........
20:46 2013-3-31
the fault of basic comparator: ringing effect........
20:49 2013-3-31
comparator using positive feedback(Schemitter characteristic)
21:03 2013-3-31
hysteresis
21:07 2013-3-31
lec21 op-amp positive feedback review done!
//////////////////////////////////////////////////////////
19:23 2013-4-1 星期一
lec22 energy & power
19:29 2013-4-1
clock provides the notion of time to the circuit!
19:36 2013-4-1
power dissipation
19:40 2013-4-1
standby power
active use power
19:45 2013-4-1
supply, dissipite
19:50 2013-4-1
power comsumption
19:55 2013-4-1
drive a MOSFET inverter with a square wave
19:58 2013-4-1
energy supplied by the source
== some dissipiated on resistor + some stored in capacitor.......
20:14 2013-4-1
charging & discharging capacitors..
20:14 2013-4-1
switching capacitors..
20:15 2013-4-1
average power of sth ==
C * Vs * Vs * f // f is frequency of the square wave
in order to decrease power -> decrease power supply voltage(Vs), decrease switching speed(f)
20:21 2013-4-1
standby power == consumed by load resistor
dynamic power == charging & discharing
20:34 2013-4-1
start lec23, Energy, CMOS
20:36 2013-4-1
static power(standby power)
dynamic power
20:49 2013-4-1
CMOS == Complementary MOS
20:51 2013-4-1
N-Channel MOSFET == NFET
P-Channel MOSFET == PFET
20:54 2013-4-1
the difference:
when VGS > VTN, NFET is ON,
when VGS < VTP, PFET is ON
20:56 2013-4-1
instead of the resistor, I put a complementary device......
20:57 2013-4-1
PU == Pull Up
PD == Pull Down
21:03 2013-4-1
CMOS logic
CMOS == PMOS + NMOS
21:04 2013-4-1
CMOS is a superior inverter, which consumes less power.......
21:08 2013-4-1
What's the virtre of CMOS compared with NMOS?
1. cuts off static power(standby power)
2. significantly faster because Ron << RL, charging is faster!
21:11 2013-4-1
equivalent circuit of CMOS
T1: charging
T2: discharging
21:12 2013-4-1
static power(standby power) is completely removed!
21:17 2013-4-1
the power of CMOS:
C * Vs * Vs * f
21:19 2013-4-1
increase f, get faster microprocessor!
decrease Vs, get smaller power.....
21:36 2013-4-1
start lec25(lec24 no available)
violating the abstraction barrier......
21:39 2013-4-1
LMD == Lumped Matter Discipline
LCA == Lumped Circuit Abstraction
21:47 2013-4-1
the 6.002 playground
21:52 2013-4-1
propagation time of the signal
coaxial wire.....
21:54 2013-4-1
capacitance & inductance of wire..
21:55 2013-4-1
transmission line effect
21:57 2013-4-1
LMD applies when the circuit speed is
much slower than the speed of light......
22:00 2013-4-1
hit the other end, reverse, and come back to me....
22:03 2013-4-1
the return wave
22:05 2013-4-1
the standard lumped model
22:06 2013-4-1
the end of the cable........
22:07 2013-4-1
put the resistor at the end.....
22:07 2013-4-1
put the resistor at the end to absorb energy
22:08 2013-4-1
characteristic impedance.....
22:09 2013-4-1
line terminator
22:13 2013-4-1
transmission line effect, solution:
1. line terminator(resistor etc.)
2. use short cable instead......
3. use a clock (to sample at a later time)
22:18 2013-4-1
case 2: Double DIP
22:21 2013-4-1
dip(opposite of spikes)
22:22 2013-4-1
CMOS inverter
22:23 2013-4-1
the dips & spikes on the inverter output....
22:27 2013-4-1
really long wire
22:30 2013-4-1
inductance effect of the long wire........
22:32 2013-4-1
the higher the speed of the circuit,
the smaller the circuit must be(short wire)
22:34 2013-4-1
each leaf of the tree draw some current.
22:35 2013-4-1
power supply buffering tree.........
22:37 2013-4-1
sharp edges -> smoother edges, then you have small di/dt
22:39 2013-4-1
capacitor coupling between adjacent pins of the IC
22:40 2013-4-1
solution: sharp transition -> smoother transition
22:40 2013-4-1
faster transition is nasty!
22:40 2013-4-1
THE END OF 6.002!