python应用中一个具体问题的效率对比

"""
在处理撮合的逻辑中,有这样一个问题:
以买入委托队列为例:需要维护一个价格由高到低的价格顺序。

对这个价格顺序下有以下两种方案:
1. 使用list
2. 使用deque
"""

import random
import timeit
from collections import deque


def random_int_list(start, stop, length):
    start, stop = (int(start), int(stop)) if start <= stop else (int(stop), int(start))
    length = int(abs(length)) if length else 0
    random_list = []
    for i in range(length):
        random_list.append(random.randint(start, stop))
    return random_list
    
def test_list(_p_list):
    """
    List方案, 完全使用list,不借助其它手段
    """
    p_list = []
    for p_in in _p_list:
        if p_in not in p_list:
            idx = 0
            for p in p_list:
                if p_in > p:
                    break
                idx += 1
            p_list.insert(idx, p_in)
        pass
    return p_list    
    
def test_list_withset(_p_list):
    """
    List方案,借助一个set,来加速 if not in判断
    """
    p_list = []
    p_set = set()
    for p_in in _p_list:
        if p_in not in p_set:
            idx = 0
            for p in p_list:
                if p_in > p:
                    break
                idx += 1
            p_list.insert(idx, p_in)
            p_set.add(p_in)
        pass
    return p_list

def test_list_withset_next(_p_list):
    """
    List方案,借助一个set,来加速if not in判断;使用next函数来查找第一个符合条件的元素
    参考http://stackoverflow.com/questions/2361426/what-is-the-best-way-to-get-the-first-item-from-an-iterable-matching-a-condition
    中提到的first_index = next(index for index, value in enumerate(the_iterable) if condition(value))
    """
    p_list = []
    p_set = set()
    for p_in in _p_list:
        if p_in not in p_set:
            first_index = next((index for index, value in enumerate(p_list) if p_in > value), len(p_list))
            p_list.insert(first_index, p_in)
            p_set.add(p_in)
        pass
    return p_list    

def test_list_withset_sort(_p_list):
    """
    List方案
    不自己维护排序,借助一个set,来加速if not in判断; 每次插入都排序
    """
    p_list = []
    p_set = set()
    for p_in in _p_list:
        if p_in not in p_set:
            p_list.append(p_in)
            p_list.sort(reverse=True)
            p_set.add(p_in)
        pass
    return p_list    

    
def test_queue(_p_list):
    """
    deque方案
    """
    p_queue = deque()
    for p_in in _p_list:
        if p_in not in p_queue:
            idx = 0
            for p in p_queue:
                if p_in > p:
                    break
                idx += 1
            p_queue.insert(idx, p_in)
        pass
    return p_queue
    
def test_queue_withset(_p_list):
    """
    deque方案
    """
    p_queue = deque()
    p_set = set()
    for p_in in _p_list:
        if p_in not in p_set:
            idx = 0
            for p in p_queue:
                if p_in > p:
                    break
                idx += 1
            p_queue.insert(idx, p_in)
            p_set.add(p_in)
        pass
    return p_queue
    
if __name__=='__main__':
    # 模拟价格区间在9~11元的随机值
    random_price_list = random_int_list(90000, 110000, 10000)
    
    p_list = test_list(random_price_list)
    p_list2 = test_list(random_price_list)
    p_queue = test_queue(random_price_list)
    
    print(p_list[0], p_list[-1], p_list2[0], p_list2[-1], p_queue[0], p_queue[-1])
    
    print(timeit.timeit('test_list(random_price_list)', number=10, globals=globals()))
    print(timeit.timeit('test_list_withset(random_price_list)', number=10, globals=globals()))
    print(timeit.timeit('test_list_withset_next(random_price_list)', number=10, globals=globals()))
    print(timeit.timeit('test_list_withset_sort(random_price_list)', number=10, globals=globals()))
    
    print(timeit.timeit('test_queue(random_price_list)', number=10, globals=globals()))
    print(timeit.timeit('test_queue_withset(random_price_list)', number=10, globals=globals()))

    


以下是输出结果:

109999 90000 109999 90000 109999 90000
22.2045529369317
16.38033776747557
15.252241216916637
8.420866390707168
26.823208546270322
18.25433301937217


可以看出使用test_list_withset_sort是最快的!


也请大家帮忙看看是否还有更好的方案,谢谢!

你可能感兴趣的:(python)