Java8 中的 ConcurrentHashMap 的put()方法简单解析

1.put()方法:大方向上可以分为三块:1.初始化,2扩容,3数据迁移

public V put(K key, V value) {
        return putVal(key, value, false);
    }

    /** Implementation for put and putIfAbsent */
    final V putVal(K key, V value, boolean onlyIfAbsent) {
        //key和value都不允许null
        if (key == null || value == null) throw new NullPointerException();
        int hash = spread(key.hashCode());
        // 用于记录相应链表的长度
        int binCount = 0;
        //遍历数组
        for (Node[] tab = table;;) {
            Node f; int n, i, fh;
            //数组不存在或者没数据的情况,初始化
            if (tab == null || (n = tab.length) == 0)
                tab = initTable();
            //如果数组当前位置为null,用一次 CAS 操作将这个新值放入其中
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
                if (casTabAt(tab, i, null,
                             new Node(hash, key, value, null)))
                    break;                   // no lock when adding to empty bin
            }
            //
            else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            else {
                //如果f是头结点
                V oldVal = null;
                //加锁
                synchronized (f) {
                    //
                    if (tabAt(tab, i) == f) {
                        //头结点的 hash 值大于 0,说明是链表
                        if (fh >= 0) {
                            //链表长度+1
                            binCount = 1;
                            //遍历链表
                            for (Node e = f;; ++binCount) {
                                K ek;
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    // 如果发现了"相等"的 key,判断是否要进行值覆盖
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                // 到了链表的最末端,将新值放到链表的最末端
                                Node pred = e;
                                if ((e = e.next) == null) {
                                    pred.next = new Node(hash, key,
                                                              value, null);
                                    break;
                                }
                            }
                        }
                        //如果是一个红黑树的结构,将新值放到红黑树中
                        else if (f instanceof TreeBin) {
                            Node p;
                            binCount = 2;
                            if ((p = ((TreeBin)f).putTreeVal(hash, key,
                                                           value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                //链表的长度大于8;转换为红黑树
                if (binCount != 0) {
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        addCount(1L, binCount);
        return null;
    }

1.1 private final void treeifyBin(Node[] tab, int index) :以链表存储还是按红黑树结构存储

    private final void treeifyBin(Node[] tab, int index) {
        Node b; int n, sc;
        if (tab != null) {
            //判断当前表容量
            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
                tryPresize(n << 1);
            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
                //加锁
                synchronized (b) {
                    //找到对应的数组
                    if (tabAt(tab, index) == b) {
                        TreeNode hd = null, tl = null;
                        //遍历链表
                        for (Node e = b; e != null; e = e.next) {
                            TreeNode p =
                                new TreeNode(e.hash, e.key, e.val,
                                                  null, null);
                            if ((p.prev = tl) == null)
                                hd = p;
                            else
                                tl.next = p;
                            tl = p;
                        }
                        //建立一个红黑树
                        setTabAt(tab, index, new TreeBin(hd));
                    }
                }
            }
        }
    }

1.1.1 private final Node[] initTable(): cas 加锁,并设置主内存变量sizeCtl

    private final Node[] initTable() {
        Node[] tab; int sc;
        while ((tab = table) == null || tab.length == 0) {
            if ((sc = sizeCtl) < 0)
                Thread.yield(); // lost initialization race; just spin
            // CAS,将 sizeCtl 设置为 -1,代表抢到了锁
            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                try {
                    //表为空或者没有数据
                    if ((tab = table) == null || tab.length == 0) {
                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                        @SuppressWarnings("unchecked")
                        //初始化一个表(初始化一个数组)
                        Node[] nt = (Node[])new Node[n];
                        table = tab = nt;
                        //如果 n 为 16 的话,那么这里 sc = 12  也就是 0.75 * n
                        sc = n - (n >>> 2);
                    }
                } finally {
                    //赋值到主内存中的sizeCtl 
                    sizeCtl = sc;
                }
                break;
            }
        }
        return tab;
    }

1.2 private final void tryPresize(int size):按数组合链表结构创建map

    private final void tryPresize(int size) {
        //size+0.5size+1,再往上取最近的 2 的 n 次方
        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
            tableSizeFor(size + (size >>> 1) + 1);
        int sc;
        //sizeCtl 是主内存中的一个值
        while ((sc = sizeCtl) >= 0) {
            //获取当前表
            Node[] tab = table; int n;
            if (tab == null || (n = tab.length) == 0) {
                //可以理解为当前的表空间
                n = (sc > c) ? sc : c;
                //CAS 线程安全限制,提高效率,其实是加锁-1
                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                    try {
                        if (table == tab) {
                            @SuppressWarnings("unchecked")
                            //创建数组空间
                            Node[] nt = (Node[])new Node[n];
                            table = nt;
                            sc = n - (n >>> 2);
                        }
                    } finally {
                        //赋值到主内存中的sizeCtl 
                        sizeCtl = sc;
                    }
                }
            }
            //
            else if (c <= sc || n >= MAXIMUM_CAPACITY)
                break;
            else if (tab == table) {
                int rs = resizeStamp(n);
                if (sc < 0) {
                    Node[] nt;
                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                        transferIndex <= 0)
                        break;
                    //用 CAS 将 sizeCtl 加 1,然后执行 transfer 方法
                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                        transfer(tab, nt);
                }
                //将 sizeCtl 设置为 (rs << RESIZE_STAMP_SHIFT) + 2)
                else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                             (rs << RESIZE_STAMP_SHIFT) + 2))
                    transfer(tab, null);
            }
        }
    }

1.3  private final void transfer(Node[] tab, Node[] nextTab) :数据迁移,判断以何种结构存储

    private final void transfer(Node[] tab, Node[] nextTab) {
        int n = tab.length, stride;
        // stride 在单核下直接等于 n,多核模式下为 (n>>>3)/NCPU,最小值是 16
        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
            //设置16
            stride = MIN_TRANSFER_STRIDE; // subdivide range
        //入参为null
        if (nextTab == null) {            // initiating
            try {
                @SuppressWarnings("unchecked")
                //位移一位,表空间扩大一倍
                Node[] nt = (Node[])new Node[n << 1];
                nextTab = nt;
            } catch (Throwable ex) {      // try to cope with OOME
                sizeCtl = Integer.MAX_VALUE;
                return;
            }
            //给到当前新表
            nextTable = nextTab;
            //控制迁移的位置
            transferIndex = n;
        }
        //数组长度
        int nextn = nextTab.length;
        ForwardingNode fwd = new ForwardingNode(nextTab);
        boolean advance = true;
        boolean finishing = false; // to ensure sweep before committing nextTab
        //索引和边界从零开始
        for (int i = 0, bound = 0;;) {
            Node f; int fh;
            while (advance) {
                int nextIndex, nextBound;
                //如果索引值比边界值大或者相同或者结束了,迁移就结束了
                if (--i >= bound || finishing)
                    advance = false;
                //
                else if ((nextIndex = transferIndex) <= 0) {
                    i = -1;
                    advance = false;
                }
                else if (U.compareAndSwapInt
                         (this, TRANSFERINDEX, nextIndex,
                          nextBound = (nextIndex > stride ?
                                       nextIndex - stride : 0))) {
                    bound = nextBound;
                    i = nextIndex - 1;
                    advance = false;
                }
            }
            if (i < 0 || i >= n || i + n >= nextn) {
                int sc;
                // 所有的迁移操作已经完成
                if (finishing) {
                    nextTable = null;
                    // 将新的 nextTab 赋值给 table 属性,完成迁移
                    table = nextTab;
                    // 重新计算 sizeCtl:n 是原数组长度,所以 sizeCtl 是新数组长度
                    sizeCtl = (n << 1) - (n >>> 1);
                    return;
                }
                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                        return;
                    finishing = advance = true;
                    i = n; // recheck before commit
                }
            }
            // 如果位置 i 处是空的,cas节点出来放入刚刚初始化的 ForwardingNode 空节点
            else if ((f = tabAt(tab, i)) == null)
                advance = casTabAt(tab, i, null, fwd);
            // 该位置处是一个 ForwardingNode,代表该位置已经迁移过了
            else if ((fh = f.hash) == MOVED)
                advance = true; // already processed
            else {
                // 对数组该位置处的结点加锁,开始处理数组该位置处的迁移工作
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        Node ln, hn;
                        // 头结点的 hash 大于 0,说明是链表的 Node 节点
                        if (fh >= 0) {
                            //和jdk1.7类似,分两个链表处理
                            int runBit = fh & n;
                            Node lastRun = f;
                            for (Node p = f.next; p != null; p = p.next) {
                                int b = p.hash & n;
                                if (b != runBit) {
                                    runBit = b;
                                    lastRun = p;
                                }
                            }
                            if (runBit == 0) {
                                ln = lastRun;
                                hn = null;
                            }
                            else {
                                hn = lastRun;
                                ln = null;
                            }
                            for (Node p = f; p != lastRun; p = p.next) {
                                int ph = p.hash; K pk = p.key; V pv = p.val;
                                if ((ph & n) == 0)
                                    ln = new Node(ph, pk, pv, ln);
                                else
                                    hn = new Node(ph, pk, pv, hn);
                            }
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                        //判断是不是红黑树,
                        else if (f instanceof TreeBin) {
                            //按红黑树规则插入红黑树的节点
                            TreeBin t = (TreeBin)f;
                            TreeNode lo = null, loTail = null;
                            TreeNode hi = null, hiTail = null;
                            int lc = 0, hc = 0;
                            for (Node e = t.first; e != null; e = e.next) {
                                int h = e.hash;
                                TreeNode p = new TreeNode
                                    (h, e.key, e.val, null, null);
                                if ((h & n) == 0) {
                                    if ((p.prev = loTail) == null)
                                        lo = p;
                                    else
                                        loTail.next = p;
                                    loTail = p;
                                    ++lc;
                                }
                                else {
                                    if ((p.prev = hiTail) == null)
                                        hi = p;
                                    else
                                        hiTail.next = p;
                                    hiTail = p;
                                    ++hc;
                                }
                            }
                            // 如果一分为二后,节点数少于 8,那么将红黑树转换回链表
                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                                (hc != 0) ? new TreeBin(lo) : t;
                            // // 如果一分为二后,节点数少于 8,那么将红黑树转换回链表
                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                                (lc != 0) ? new TreeBin(hi) : t;
                            // 将 ln 放置在新数组的位置 i
                            setTabAt(nextTab, i, ln);
                            // 将 hn 放置在新数组的位置 i+n
                            setTabAt(nextTab, i + n, hn);
                            //将原数组该位置处设置为 fwd,代表该位置已经处理完毕
                            setTabAt(tab, i, fwd);
                            //设置处理完成的标志
                            advance = true;
                        }
                    }
                }
            }
        }
    }

 

你可能感兴趣的:(小知识)