GPIO的八种工作模式详解
浮空输入_IN_FLOATING
带上拉输入_IPU
带下拉输入_IPD
模拟输入_AIN
开漏输出_OUT_OD
推挽输出_OUT_PP
开漏复用输出_AF_OD
推挽复用输出_AF_PP
4输入 + 2 输出 + 2 复用输出,一共是8种模式,以下是八种模式的工作原理:
GPIO基本结构
第一:浮空输入模式;在这张图上,阴影的部分处于不工作状态,尤其是下半部分的输出电路,实际上是与端口处于隔离状态。
黄色的高亮部分显示了数据传输通道,外部的电平信号通过左边编号1的I/O端口进入STM32,经过编号2的施密特触发器的整形送入编号3的“输入数据寄存器”,在“输入数据寄存器”的另一端(编号4),CPU可以随时读出I/O端口的电平状态。
第二:输入上拉模式;与前面的浮空输入模式相比,仅仅是在数据通道上部,接入了一个上拉电阻,根据STM32的数据手册,这个上拉电阻阻值介于30K~50K欧姆。同样,CPU可以随时在“输入数据寄存器”的另一端,读出I/O端口的电平状态。
第三:输入下拉模式;数据通道的下部,接入了一个下拉电阻,根据STM32的数据手册,这个下拉电阻阻值也是介于30K~50K欧姆。
第四:模拟输入模式;信号从左边编号1的端口进入,从右边编号2的一端直接进入ADC模块。这里我们看到所有的上拉、下拉电阻和施密特触发器,均处于断开状态,因此“输入数据寄存器”将不能反映端口上的电平状态,也就是说,模拟输入配置下,CPU不能在“输入数据寄存器”上读到有效的数据。
使用方法
上拉就是将不确定的信号通过一个电阻嵌位在高电平,电阻同时起限流作用,下拉同理. 上拉是对器件注入电流,下拉是输出电流,弱强只是上拉电阻的阻值不同,没有什么严格区分。这是网上搜索到的官方说法,那么什么叫不确定信号呢?比如说引脚悬空,如果芯片工作在恶劣的环境下(如有电磁干扰)或者刚上电期间电源供电不稳定,引脚的电平值就会产生波动,这就是不确定信号。那么怎么解决这个引脚电平不确定的问题呢??于是工程师们就想了一个办法,在GPIO端口驱动电路外围加上拉电阻,连到电源,将其限制在高电平状态即为上拉。将上拉电阻接到地端,将电位限制在低电平即为下拉。
上(下)拉电阻在有输入的情况下,并不会导致GPIO的输入电压一直为高(低)电平。当输入信号不确定(即悬空时有电磁干扰),才会将GPIO口的电压值拉高(低)。至于为什么是这样?我想隔离的概念应该能很好的解释
对于要加上拉或下拉电阻:
1.当作单片机作为输入时,假设我们直接在IO端口接一个按键到地(或电源)。
因为按键按,于不按管脚都是悬空的。单片机就很难检测按键是否按下。
所以人为的接一个上拉(或下拉)。以确定未按下的时候IO输入电平的状态
2.可以提高芯片的抗干扰能
3.当单片机的IO口作输出时,如果不接上拉电阻只能提供灌电流。无法输出电流驱动外接设备。这时也需要考虑上拉电阻。这样才可以使IO输出高电平
以上分析的是GPIO模块IO引脚的输入模式的工作原理,下面介绍一下GPIO输出模式的工作原理
GPIO开漏输出_OUT_OD 模式工作原理
上图是GPIO开漏输出模式的工作原理图
当CPU 在编号1 端通过“位设置/ 清除寄存器”或“输出数据寄存器”写入数据后
该数据位将通过编号2的输出控制电路传送到编号4 的I/O端口。
如果CPU 写入的是逻辑“1 ”,则编号3 的N-MOS管将处于关闭状态
此时I/O 端口的电平将由外部的上拉电阻决定
如果CPU 写入的是逻辑“0 ”,则编号3的N-MOS管将处于开启状态
此时I/O端口的电平被编号3 的N-MOS管拉到了“地”的零电位。
在图中的上半部,施密特触发器处于开启状态
这意味着CPU 可以在“输入数据寄存器”的另一端,随时可以监控I/O端口的状态
通过这个特性,还可以实现了虚拟的I/O端口双向通信:假如CPU 输出逻辑“1 ”
由于编号3 的N-MOS管处于关闭状态,I/O 端口的电平将完全由外部电路决定
因此,CPU 可以在“输入数据寄存器”读到外部电路的信号,而不是它自己输出的逻辑“1 ”
GPIO口的输出模式下,有3 种输出速度可选(2MHz 、10MHz和50MHz)
这个速度是指GPIO口驱动电路的响应速度,而不是输出信号的速度
输出信号的速度与程序有关(芯片内部在I/O口的输出部分安排了多个响应速度不同的输出驱动电路用户可以根据自己的需要选择合适的驱动电路)。
通过选择速度来选择不同的输出驱动模块,达到最佳的噪声控制和降低功耗的目的。
高频的驱动电路,噪声很高
当我们的项目不需要比较高的输出频率时,请选用低频驱动电路,这样非常有利于提高系统的EMI 性能。
当然如果我们的项目要求输出较高频率的信号,但却选用了较低频率的驱动模块,很可能会得到比较失真的输出信号
GPIO推挽输出_OUT_PP模式工作原理
GPIO的推挽输出模式是在开漏输出模式的基础上,在“输出控制电路”之后,增加了一个P-MOS管
当CPU输出逻辑“1 ”时,编号3 处的P-MOS管导通,而下方的N-MOS管截止,达到输出高电平的目的
当CPU输出逻辑“0 ”时,编号3 处的P-MOS管截止,而下方的N-MOS管导通,达到输出低电平的目的
在这个模式下,CPU 仍然可以从“输入数据寄存器”读到该IO端口电压变化的信号
GPIO开漏复用输出_AF_OD模式工作原理
GPIO的开漏复用输出模式与开漏输出模式的工作原理基本相同
不同的是编号为2 的输入的源不同,它是和复用功能的输出端相连
此时的“输出数据寄存器”被输出通道给断开了。
从上面的这个图,我们还可以看到CPU同样可以从“输入数据寄存器”读取到外部IO端口变化的电平信号。
GPIO推挽复用输出_AF_PP模式工作原理
最后介绍一下GPIO推挽复用输出模式的工作原理
编号2“输出控制电路” 输入是与复用功能的输出端相连
此时“输出数据寄存器”被从输出通道断开了,片上外设的输出信号直接与“输出控制电路”的输入端想连接。
我们将GPIO配置成复用输出功能后,假如相应的外设模块没有被激活,那么此时IO端口的输出将不确定。
其它部分原理与前面叙述的模式一样,包括对“输入数据寄存器”的读取方式也是一样的。