Description
有n个方格,每个方格有6个属性:ai,bi,wi,li,ri,pi。
当方格涂白色时获得wi的值,方格涂黑色获得bi的值。
当方格涂黑色是若有方格满足:
1 < j < i,li<=a[j]<=ri,且方格j为白色时。
则方格i的权值需减去pi。
求一种染色方案使结果最大。
Sample Input
10
0 1 7 3 9 2
7 4 0 9 10 5
1 0 4 2 10 2
7 9 1 5 7 2
6 3 5 3 6 2
6 6 4 1 8 1
6 1 6 0 6 5
2 2 5 0 9 3
5 1 3 0 2 5
5 6 7 1 1 2
Sample Output
55
好题啊!
首先可以想到用总权值减去不合法方案值,那你就要做一个最小割。
先拆一下点,建出如下的图:
ins(st,i,w[i]),ins(i,ed,b[i]),ins(i’,i,p[i])
对于所有满足i的条件的点j:ins(j,i’,inf)
假设我们割掉了i的白边,若任意一个j的黑边被割掉了,那就会形成有可能一条路径使i权值累加pi。
若割掉了i的黑边,则不会累加pi的值。
考虑完建图之后,我们发现规模达到了n^2……
于是就要用线段树辅助建图,对于所有的i我们将他指向他所要求的区间,
但由于要满足j < i,所以你就要可持久化。。。
#include
#include
#include
#include
using namespace std;
int _min(int x, int y) {return x < y ? x : y;}
int read() {
int s = 0, f = 1; char ch = getchar();
while(ch < '0' || ch > '9') {if(ch == '-') f = -1; ch = getchar();}
while(ch >= '0' && ch <= '9') s = s * 10 + ch - '0', ch = getchar();
return s * f;
}
struct node {
int x, id;
} d[16000];
struct tnode {
int lc, rc;
} t[310000]; int cnt, rt[5100];
struct edge {
int x, y, c, next;
} e[810000]; int len, last[210000];
int L[5100], R[5100], a[5100];
int st, ed, h[210000];
queue<int> q;
bool cmp(node a, node b) {return a.x < b.x;}
void ins(int x, int y, int c) {
e[++len].x = x; e[len].y = y; e[len].c = c;
e[len].next = last[x]; last[x] = len;
e[++len].x = y; e[len].y = x; e[len].c = 0;
e[len].next = last[y]; last[y] = len;
}
bool bfs() {
memset(h, 0, sizeof(h)); h[st] = 1; q.push(st);
while(!q.empty()) {
int x = q.front(); q.pop();
for(int k = last[x]; k; k = e[k].next) {
int y = e[k].y;
if(!h[y] && e[k].c) h[y] = h[x] + 1, q.push(y);
}
} if(!h[ed]) return 0;
return 1;
}
int dfs(int x, int flow) {
if(x == ed) return flow;
int tt = 0, minf;
for(int k = last[x]; k; k = e[k].next) {
int y = e[k].y;
if(h[y] == h[x] + 1 && e[k].c && tt < flow) {
minf = dfs(y, _min(e[k].c, flow - tt));
e[k].c -= minf; e[k ^ 1].c += minf;
tt += minf;
}
} if(!tt) h[x] = 0;
return tt;
}
void Link(int &u, int l, int r, int p, int x) {
if(!u) u = ++cnt;
ins(x, u + ed, 999999999);
if(l == r) return ;
int mid = (l + r) / 2;
if(p <= mid) Link(t[u].lc, l, mid, p, x);
else Link(t[u].rc, mid + 1, r, p, x);
}
void Merge(int &u1, int u2) {
if(!u1 || !u2) {u1 = u1 + u2; return ;}
ins(u2 + ed, u1 + ed, 999999999);
Merge(t[u1].lc, t[u2].lc);
Merge(t[u1].rc, t[u2].rc);
}
void Ins(int u, int l, int r, int ll, int rr, int x) {
if(!u) return ;
if(l == ll && r == rr) {ins(u + ed, x, 999999999); return ;}
int mid = (l + r) / 2;
if(rr <= mid) Ins(t[u].lc, l, mid, ll, rr, x);
else if(ll > mid) Ins(t[u].rc, mid + 1, r, ll, rr, x);
else Ins(t[u].lc, l, mid, ll, mid, x), Ins(t[u].rc, mid + 1, r, mid + 1, rr, x);
}
int main() {
int n = read();
st = 0, ed = n * 2 + 1; len = 1;
int hh = 0;
for(int i = 1; i <= n; i++) {
a[i] = read(); int b = read(), w = read();
L[i] = read(), R[i] = read(); int p = read();
hh += b + w;
ins(st, i, w), ins(i, ed, b);
ins(i + n, i, p);
d[i * 3 - 2].id = i * 3 - 3;
d[i * 3 - 1].id = i * 3 - 2;
d[i * 3].id = i * 3 - 1;
d[i * 3 - 2].x = L[i];
d[i * 3 - 1].x = R[i];
d[i * 3].x = a[i];
} int tp = 0;
sort(d + 1, d + 3 * n + 1, cmp);
for(int i = 1; i <= 3 * n; i++) {
if(d[i].x != d[i - 1].x || i == 1) tp++;
if(d[i].id % 3 == 0) L[d[i].id / 3 + 1] = tp;
if(d[i].id % 3 == 1) R[d[i].id / 3 + 1] = tp;
if(d[i].id % 3 == 2) a[d[i].id / 3 + 1] = tp;
}
for(int i = 1; i <= n; i++) {
Link(rt[i], 1, tp, a[i], i);
Merge(rt[i], rt[i - 1]);
Ins(rt[i - 1], 1, tp, L[i], R[i], i + n);
}
// for(int i = 1; i <= n; i++) {
// for(int j = 1; j < i; j++) if(a[j] >= L[i] && a[j] <= R[i]){
// ins(j, i + n, 999999999);
// }
// }//n^2建图
int ans = 0;
while(bfs()) ans += dfs(st, 999999999);
printf("%d\n", hh - ans);
return 0;
}