python课程作业——scipy

python课程作业——scipy_第1张图片
python课程作业——scipy_第2张图片

import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
# 10-1 reference: https://docs.scipy.org/doc/scipy-1.1.0/reference/tutorial/linalg.html
from scipy.linalg import lstsq
m = 10
n = 5
A = np.random.randint(10, size=(m ,n))
b = np.random.randint(10, size=m)
x, residual, rank, s = lstsq(A, b)
print('A =', A)
print('x =', x)

print('A*x =', A.dot(x))
print('b =', b)
print('residual =', residual)
A = [[7 0 6 0 5]
 [8 1 7 0 1]
 [7 0 5 3 0]
 [0 6 3 9 6]
 [6 2 2 3 7]
 [6 4 9 0 4]
 [8 7 0 1 3]
 [0 2 1 8 6]
 [8 0 9 6 1]
 [7 3 0 4 7]]
x = [-0.21398376 -0.22535051  0.54616875  0.08852853  0.55954735]
A*x = [ 4.57686293  2.44550802  1.49854304  4.44044405  3.54015095  4.96840354
 -1.52215309  4.16098006  4.29436723  2.0970077 ]
b = [9 3 2 5 0 3 0 6 3 1]
residual = 45.42120287262695
# 10-2 reference: https://docs.scipy.org/doc/scipy-1.1.0/reference/generated/scipy.optimize.minimize_scalar.html#scipy.optimize.minimize_scalar
from scipy.optimize import minimize_scalar

def f(x):
    return np.sin(x-2)**2 * np.exp(-x**2)
x_max = minimize_scalar(lambda x: -f(x)).x
print('x_max = ', x_max)
x = np.arange(0, 2, 0.001)
plt.plot(x, f(x), 'b-', label='$\sin^2(x-2)e^{-x^2}$')
plt.plot(x_max, f(x_max), 'ro', label='x_max')
plt.xlabel('x')
plt.ylabel('f(x)')
plt.legend()
plt.show()
x_max =  0.21624132858697098

python课程作业——scipy_第3张图片

# 10-3 reference: https://docs.scipy.org/doc/scipy-1.1.0/reference/spatial.distance.html
from scipy.spatial.distance import pdist, squareform
n = 6
m = 2
X = np.random.randint(10, size=(n, m))
print(X)
print(squareform(pdist(X)))
[[9 9]
 [5 7]
 [6 6]
 [0 9]
 [8 1]
 [6 9]]
[[ 0.          4.47213595  4.24264069  9.          8.06225775  3.        ]
 [ 4.47213595  0.          1.41421356  5.38516481  6.70820393  2.23606798]
 [ 4.24264069  1.41421356  0.          6.70820393  5.38516481  3.        ]
 [ 9.          5.38516481  6.70820393  0.         11.3137085   6.        ]
 [ 8.06225775  6.70820393  5.38516481 11.3137085   0.          8.24621125]
 [ 3.          2.23606798  3.          6.          8.24621125  0.        ]]

你可能感兴趣的:(Python课程)