- 深入解析 SAE 训练输出文件:结构与意义
阿正的梦工坊
LLM语言模型人工智能自然语言处理
深入解析SAE训练输出文件:结构与意义在利用SAELens框架进行稀疏自编码器(SparseAutoencoder,SAE)训练时,训练完成后会生成一组关键文件,这些文件记录了模型的权重、状态以及相关信息。本文将详细解析路径SAELens/tutorials/checkpoints/n78ngo5e/final_122880000下生成的四个文件:activations_store_state.s
- AIGC视觉生成革命:文生图、图生图与视频生成垂直模型发展全景报告(2025)
Liudef06小白
AIGC人工智能AI作画语言模型
一、引言:从实验工具到产业引擎的跃迁人工智能生成内容(AIGC)技术正经历从文本向多模态的范式转移。2023-2025年间,文生图、图生图与视频生成垂直模型逐步跨越技术奇点,从实验室玩具进化为工业化生产力工具。这一进程的核心驱动力在于架构创新、数据优化与场景深耕的三重突破:扩散模型与Transformer的融合催生了更高保真度的图像生成;十亿级多模态数据训练解决了复杂语义理解难题;而面向影视、电商
- 暑假算法日记第三天
目标:刷完灵神专题训练算法题单阶段目标:【算法题单】滑动窗口与双指针LeetCode题目:3439.重新安排会议得到最多空余时间I2134.最少交换次数来组合所有的1II1297.子串的最大出现次数2653.滑动子数组的美丽值1888.使二进制字符串字符交替的最少反转次数567.字符串的排列438.找到字符串中所有字母异位词30.串联所有单词的子串2156.查找给定哈希值的子串其他:今日总结往期打
- 60天python训练营打卡day46
学习目标:60天python训练营打卡学习内容:DAY46通道注意力(SE注意力)知识点回顾:1.不同CNN层的特征图:不同通道的特征图2.什么是注意力:注意力家族,类似于动物园,都是不同的模块,好不好试了才知道。3.通道注意力:模型的定义和插入的位置4.通道注意力后的特征图和热力图学习时间:2025.06.29@浙大疏锦行
- Python 训练营打卡 Day 46
2401_86382089
Python打卡python
通道注意力一、什么是注意力注意力机制是一种让模型学会「选择性关注重要信息」的特征提取器,就像人类视觉会自动忽略背景,聚焦于图片中的主体(如猫、汽车)。transformer中的叫做自注意力机制,他是一种自己学习自己的机制,他可以自动学习到图片中的主体,并忽略背景。我们现在说的很多模块,比如通道注意力、空间注意力、通道注意力等等,都是基于自注意力机制的。从数学角度看,注意力机制是对输入特征进行加权求
- Python训练营打卡 Day53
yunvwugua__
python自学打卡python开发语言
对抗生成网络知识点回顾:对抗生成网络的思想:关注损失从何而来生成器、判别器nn.sequential容器:适合于按顺序运算的情况,简化前向传播写法leakyReLU介绍:避免relu的神经元失活现象对抗生成网络(GAN)知识点回顾对抗生成网络的思想思想:就像在餐厅中,有一个厨师(生成器)负责制作假菜,一个评论家(判别器)负责区分真菜和假菜。厨师的目标是制作出评论家无法区分的假菜,而评论家的目标是找
- Python 训练营打卡 Day 50
2401_86382089
Python打卡python
预训练模型CBAM注意力现在我们思考下,是否可以对于预训练模型增加模块来优化其效果,这里我们会遇到一个问题:预训练模型的结构和权重是固定的,如果修改其中的模型结构,是否会大幅影响其性能。其次是训练的时候如何训练才可以更好的避免破坏原有的特征提取器的参数。所以今天的内容,我们需要回答2个问题。resnet18中如何插入cbam模块?采用什么样的预训练策略,能够更好的提高效率?可以很明显的想到,如果是
- Python训练营打卡 Day50
预训练模型+CBAM模块知识点回顾:resnet结构解析CBAM放置位置的思考针对预训练模型的训练策略差异化学习率三阶段微调预训练模型+CBAM模块知识点回顾ResNet结构解析残差块:ResNet的核心是残差块,它通过残差连接解决了深层网络的梯度消失问题。残差块允许梯度直接传播到后面的层,从而使得网络能够训练得更深。网络结构:ResNet由多个残差块组成,每个残差块包含两个或三个卷积层,以及一个
- 自然语言处理-基于预训练模型的方法-笔记
自然语言处理-基于预训练模型的方法-笔记【下载地址】自然语言处理-基于预训练模型的方法-笔记《自然语言处理-基于预训练模型的方法》由哈尔滨工业大学出版,深入探讨了NLP领域的前沿技术与预训练模型的应用。本书系统介绍了预训练模型的基本概念、发展历程及常见模型的原理,并通过丰富的实践案例与代码实现,帮助读者掌握这些技术在自然语言处理任务中的实际应用。无论是初学者、研发人员,还是希望提升NLP能力的研究
- 深度模型训练,加速数据读取遇到显卡跑不满的问题
不是吧这都有重名
遇到的问题llama人工智能LLMpython
实测在pytorch的dataloader中使用prefetch_factor参数的时候,如果数据在机械硬盘上显卡始终是跑不满的,瓶颈在数据预加载速度上,当数据放在固态硬盘的时候就可以跑满。问题排查过程:一直在跑模型,但是数据量比较大,之前有段时间还是比较头疼显卡跑不满的。后来直接用钞能力,加了内存条,将数据缓存后一次性读到内存中终于可以跑满了,然后后面就一直没管这个了,唯一的缺点就是每次开始训练
- 模型微调方法Prefix-Tuning
ballball~~
大模型人工智能算法大数据
简介:个人学习分享,如有错误,欢迎批评指正。随着大规模预训练语言模型(如GPT系列、BERT等)的广泛应用,如何高效、经济地针对特定任务对这些模型进行微调(Fine-Tuning)成为研究热点。传统的微调方法通常需要调整模型的大量参数,导致计算资源消耗大、适应新任务的速度慢。为了解决这一问题,Prefix-Tuning(前缀调优)作为一种高效的微调技术被提出,旨在通过引入少量可训练的前缀参数,达到
- yolov5训练失败总结
BTU_YC
深度学习pythonpytorch
yolov5训练失败总结版本原因:在进行训练时,出现如下报错:UserWarning:Detectedcalloflr_scheduler.step()beforeoptimizer.step().InPyTorch1.1.0andlater,youshouldcallthemintheoppositeorder:optimizer.step()beforelr_scheduler.step().
- 【PaddleOCR】OCR文本检测与文本识别数据集整理,持续更新......
博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907)博主粉丝群介绍:①群内初中生、
- 样本量计算:配对样本定量资料——平均值法
今天介绍的是配对样本定量资料采用平均值法的样本量计算。先来看一下案例。一、案例为明确某种新的训练计划是否能显著提高运动员的100米短跑成绩,欲招募一批志愿者,分别记录运动员在进行新训练计划前后的100米短跑成绩(秒)。据早期研究,两配对样本差值的标准差为5秒,若接受新的训练计划前后的100米短跑成绩平均值差为3秒,问至少需要招募多少志愿者?运动员的100米短跑成绩属于连续性数据。经正态性检验,成绩
- Logistic回归预测模型2:R语言实现模型的内部和外部验证
前面我们讲了logistic回归预测模型的建立,今天介绍的是模型的验证,可以在训练集和验证集中通过ROC曲线、校准曲线和决策曲线分别进行验证。1、原始数据原始数据分为训练集和验证集,其中训练集用于模型的构建和内部验证,验证集用于外部验证。两个数据集都包含5列,且列名相同。组别Group为因变量,1代表阳性结局,0代表阴性结局。自变量1和4为连续性变量,自变量2和3为二分类变量。2、安装所需要的R包
- ImportError: /nvidia/cusparse/lib/libcusparse.so.12: undefined symbol: __nvJitLinkComplete_12_4
爱编程的喵喵
Python基础课程pythonImportErrortorchnvJitLink解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了ImportError:/home/
- 【机器学习笔记Ⅰ】13 正则化代价函数
正则化代价函数(RegularizedCostFunction)详解正则化代价函数是机器学习中用于防止模型过拟合的核心技术,通过在原始代价函数中添加惩罚项,约束模型参数的大小,从而提高泛化能力。以下是系统化的解析:1.为什么需要正则化?过拟合问题:当模型过于复杂(如高阶多项式回归、深度神经网络)时,可能完美拟合训练数据但泛化性能差。解决方案:在代价函数中增加对参数的惩罚,抑制不重要的特征权重。2.
- 机器学习笔记——支持向量机
star_and_sun
机器学习笔记支持向量机
支持向量机参数模型对分布需要假设(这也是与非参数模型的区别之一)间隔最大化,形式转化为凸二次规划问题最大化间隔间隔最大化是意思:对训练集有着充分大的确信度来分类训练数据,最难以分的点也有足够大的信度将其分开间隔最大化的分离超平面的的求解怎么求呢?最终的方法如下1.线性可分的支持向量机的优化目标其实就是找得到分离的的超平面求得参数w和b的值就可以了注意,最大间隔分离超平面是唯一的,间隔叫硬间隔1.1
- 网络安全相关专业总结(非常详细)零基础入门到精通,收藏这一篇就够了
网络安全工程师教学
兼职副业黑客技术网络安全web安全安全人工智能网络运维
一、网络工程专业专业内涵网络工程是指按计划进行的以工程化的思想、方式、方法,设计、研发和解决网络系统问题的工程,一般指计算机网络系统的开发与构建。该专业培养具备计算机科学与技术学科理论基础,掌握网络技术领域专业知识和基本技能,在计算机、网络及人工智能领域的工程实践和应用方面受到良好训练,具有深厚通信背景、可持续发展、能力较强的高水平工程技术人才。学生可在计算机软硬件系统、互联网、移动互联网及新一代
- 大语言模型应用指南:ReAct 框架
AI大模型应用实战
javapythonjavascriptkotlingolang架构人工智能
大语言模型应用指南:ReAct框架关键词:大语言模型,ReAct框架,自然语言处理(NLP),模型融合,多模态学习,深度学习,深度学习框架1.背景介绍1.1问题由来近年来,深度学习技术在自然语言处理(NLP)领域取得了显著进展。尤其是大语言模型(LargeLanguageModels,LLMs),如BERT、GPT系列等,通过在大规模无标签数据上进行预训练,获得了强大的语言理解和生成能力。然而,预
- PyTorch 的 torch.nn 模块学习
torch.nn是PyTorch中专门用于构建和训练神经网络的模块。它的整体架构分为几个主要部分,每部分的原理、要点和使用场景如下:1.nn.Module原理和要点:nn.Module是所有神经网络组件的基类。任何神经网络模型都应该继承nn.Module,并实现其forward方法。使用场景:用于定义和管理神经网络模型,包括层、损失函数和自定义的前向传播逻辑。主要API和使用场景:__init__
- 【网络安全基础】第七章---无线网络安全
薄荷椰果抹茶
信息安全与网络安全web安全网络安全
仅供参考文章目录一、无线安全二、移动设备安全三、IEEE802.11四、IEEE802.11i五、习题训练一、无线安全严重威胁无线网络安全的关键因素:信道、移动性、资源、可访问性无线网络环境由三部分组成,为攻击提供了切入点:无线客户(手机等)、无线接入点(Wifi热点等)、传递无线电波无线网络安全威胁:无线安全措施:安全无线传输、安全的无线接入点、安全的无线网络无线网络安全主要通过加密和认证来实现
- 大模型训练与微调(1)——优化器选择总结
John_今天务必休息一天
人工智能机器学习深度学习
大模型训练与微调(1)——优化器选择总结一、AdamW优化器:成熟稳定的主流选择二、Lion优化器:谷歌提出的高效替代方案三、其他优化器的补充应用四、优化器选择趋势与实验对比五、未来发展方向当前最新的大模型在优化器的选择上,主要结合了传统优化器的稳定性与新型优化器的效率优势。以下是主流大模型采用的优化器及其技术特点的总结:一、AdamW优化器:成熟稳定的主流选择核心原理与改进AdamW是Adam的
- 10.2 ChatGPT自动生成训练数据实战:37.2%准确率提升秘籍
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力chatgpt人工智能机器学习语言模型
ChatGPT自动生成训练数据实战:37.2%准确率提升秘籍使用ChatGPT自动设计生成训练数据的Prompt在大模型微调场景中,高质量训练数据的获取往往是制约模型效果的核心瓶颈。根据2023年GoogleResearch的实证研究,使用GPT-4生成的合成数据对LLaMA2进行微调,能达到人工标注数据85%的效果水平。本章将揭秘如何通过ChatGPT自动生成适配ChatGLM3的微调数据。一、
- SFT(监督微调)详解:零基础入门到精通,一篇详细的入门教程!
AGI大模型老王
人工智能程序员大模型学习AI大模型大模型微调SFT
文章目录具体步骤如下:应用场景优点举例步骤1:预训练模型的选择步骤2:数据收集与标注步骤3:数据预处理步骤4:数据集划分步骤5:加载预训练模型步骤6:数据编码步骤7:创建数据加载器步骤8:定义训练过程步骤9:模型评估步骤10:模型保存零基础入门AI大模型一、全套AGI大模型学习路线二、640套AI大模型报告合集三、AI大模型经典PDF籍四、AI大模型商业化落地方案学习计划:资料领取SFT(监督微调
- 四种微调技术详解:SFT 监督微调、LoRA 微调、P-tuning v2、Freeze 监督微调方法
当谈到人工智能大语言模型的微调技术时,我们进入了一个令人兴奋的领域。这些大型预训练模型,如GPT-3、BERT和T5,拥有卓越的自然语言处理能力,但要使它们在特定任务上表现出色,就需要进行微调,以使其适应特定的数据和任务需求。在这篇文章中,我们将深入探讨四种不同的人工智能大语言模型微调技术:SFT监督微调、LoRA微调方法、P-tuningv2微调方法和Freeze监督微调方法。第一部分:SFT监
- Longformer: The Long-Document Transformer(2020-4-10)
不负韶华ღ
深度学习(NLP)transformer深度学习人工智能
模型介绍目前基于Transformer的预训练模型在各项NLP任务纷纷取得更好的效果,这些成功的部分原因在于Self-Attention机制,它运行模型能够快速便捷地从整个文本序列中捕获重要信息。然而传统的Self-Attention机制的时空复杂度与文本的序列长度呈平方的关系,这在很大程度上限制了模型的输入不能太长,因此需要将过长的文档进行截断传入模型进行处理,例如BERT中能够接受的最大序列长
- Python 数据分析与可视化 Day 14 - 建模复盘 + 多模型评估对比(逻辑回归 vs 决策树)
蓝婷儿
pythonpython数据分析逻辑回归
✅今日目标回顾整个本周数据分析&建模流程学会训练第二种模型:决策树(DecisionTree)掌握多模型对比评估的方法与实践输出综合对比报告:准确率、精确率、召回率、F1等指标为后续模型调优与扩展打下基础一、本周流程快速回顾步骤内容第1天高级数据操作(索引、透视、变形)第2天缺失值和异常值处理第3天多表合并与连接第4天特征工程(编码、归一化、时间)第5天数据集拆分(训练集/测试集)第6天逻辑回归模
- 60天python训练计划----day59
在之前的学习中,我们层层递进的介绍了时序模型的发展,从AR到MA到ARMA,再到ARIMA。本质就是把数据处理的操作和模型结合在一起了,实际上昨天提到的季节性差分也可以合并到模型中,让流程变得更加统一。季节性差分用S来表示,所以这个模型叫做SARIMA模型一、SARIMA模型SARIMA(SeasonalAutoRegressiveIntegratedMovingAverage)是标准ARIMA模
- 机器学习18-强化学习RLHF
坐吃山猪
机器学习机器学习人工智能
机器学习18-强化学习RLHF1-什么是RLHFRLHF(ReinforcementLearningfromHumanFeedback)即基于人类反馈的强化学习算法,以下是详细介绍:基本原理RLHF是一种结合了强化学习和人类反馈的机器学习方法。传统的强化学习通常依赖于预定义的奖励函数来指导智能体的学习,而RLHF则通过引入人类的反馈来替代或补充传统的奖励函数。在训练过程中,人类会对智能体的行为或输
- ztree异步加载
3213213333332132
JavaScriptAjaxjsonWebztree
相信新手用ztree的时候,对异步加载会有些困惑,我开始的时候也是看了API花了些时间才搞定了异步加载,在这里分享给大家。
我后台代码生成的是json格式的数据,数据大家按各自的需求生成,这里只给出前端的代码。
设置setting,这里只关注async属性的配置
var setting = {
//异步加载配置
- thirft rpc 具体调用流程
BlueSkator
中间件rpcthrift
Thrift调用过程中,Thrift客户端和服务器之间主要用到传输层类、协议层类和处理类三个主要的核心类,这三个类的相互协作共同完成rpc的整个调用过程。在调用过程中将按照以下顺序进行协同工作:
(1) 将客户端程序调用的函数名和参数传递给协议层(TProtocol),协议
- 异或运算推导, 交换数据
dcj3sjt126com
PHP异或^
/*
* 5 0101
* 9 1010
*
* 5 ^ 5
* 0101
* 0101
* -----
* 0000
* 得出第一个规律: 相同的数进行异或, 结果是0
*
* 9 ^ 5 ^ 6
* 1010
* 0101
* ----
* 1111
*
* 1111
* 0110
* ----
* 1001
- 事件源对象
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- MySql配置及相关命令
g21121
mysql
MySQL安装完毕后我们需要对它进行一些设置及性能优化,主要包括字符集设置,启动设置,连接优化,表优化,分区优化等等。
一 修改MySQL密码及用户
 
- [简单]poi删除excel 2007超链接
53873039oycg
Excel
采用解析sheet.xml方式删除超链接,缺点是要打开文件2次,代码如下:
public void removeExcel2007AllHyperLink(String filePath) throws Exception {
OPCPackage ocPkg = OPCPac
- Struts2添加 open flash chart
云端月影
准备以下开源项目:
1. Struts 2.1.6
2. Open Flash Chart 2 Version 2 Lug Wyrm Charmer (28th, July 2009)
3. jofc2,这东西不知道是没做好还是什么意思,好像和ofc2不怎么匹配,最好下源码,有什么问题直接改。
4. log4j
用eclipse新建动态网站,取名OFC2Demo,将Struts2 l
- spring包详解
aijuans
spring
下载的spring包中文件及各种包众多,在项目中往往只有部分是我们必须的,如果不清楚什么时候需要什么包的话,看看下面就知道了。 aspectj目录下是在Spring框架下使用aspectj的源代码和测试程序文件。Aspectj是java最早的提供AOP的应用框架。 dist 目录下是Spring 的发布包,关于发布包下面会详细进行说明。 docs&nb
- 网站推广之seo概念
antonyup_2006
算法Web应用服务器搜索引擎Google
持续开发一年多的b2c网站终于在08年10月23日上线了。作为开发人员的我在修改bug的同时,准备了解下网站的推广分析策略。
所谓网站推广,目的在于让尽可能多的潜在用户了解并访问网站,通过网站获得有关产品和服务等信息,为最终形成购买决策提供支持。
网站推广策略有很多,seo,email,adv
- 单例模式,sql注入,序列
百合不是茶
单例模式序列sql注入预编译
序列在前面写过有关的博客,也有过总结,但是今天在做一个JDBC操作数据库的相关内容时 需要使用序列创建一个自增长的字段 居然不会了,所以将序列写在本篇的前面
1,序列是一个保存数据连续的增长的一种方式;
序列的创建;
CREATE SEQUENCE seq_pro
2 INCREMENT BY 1 -- 每次加几个
3
- Mockito单元测试实例
bijian1013
单元测试mockito
Mockito单元测试实例:
public class SettingServiceTest {
private List<PersonDTO> personList = new ArrayList<PersonDTO>();
@InjectMocks
private SettingPojoService settin
- 精通Oracle10编程SQL(9)使用游标
bijian1013
oracle数据库plsql
/*
*使用游标
*/
--显示游标
--在显式游标中使用FETCH...INTO语句
DECLARE
CURSOR emp_cursor is
select ename,sal from emp where deptno=1;
v_ename emp.ename%TYPE;
v_sal emp.sal%TYPE;
begin
ope
- 【Java语言】动态代理
bit1129
java语言
JDK接口动态代理
JDK自带的动态代理通过动态的根据接口生成字节码(实现接口的一个具体类)的方式,为接口的实现类提供代理。被代理的对象和代理对象通过InvocationHandler建立关联
package com.tom;
import com.tom.model.User;
import com.tom.service.IUserService;
- Java通信之URL通信基础
白糖_
javajdkwebservice网络协议ITeye
java对网络通信以及提供了比较全面的jdk支持,java.net包能让程序员直接在程序中实现网络通信。
在技术日新月异的现在,我们能通过很多方式实现数据通信,比如webservice、url通信、socket通信等等,今天简单介绍下URL通信。
学习准备:建议首先学习java的IO基础知识
URL是统一资源定位器的简写,URL可以访问Internet和www,可以通过url
- 博弈Java讲义 - Java线程同步 (1)
boyitech
java多线程同步锁
在并发编程中经常会碰到多个执行线程共享资源的问题。例如多个线程同时读写文件,共用数据库连接,全局的计数器等。如果不处理好多线程之间的同步问题很容易引起状态不一致或者其他的错误。
同步不仅可以阻止一个线程看到对象处于不一致的状态,它还可以保证进入同步方法或者块的每个线程,都看到由同一锁保护的之前所有的修改结果。处理同步的关键就是要正确的识别临界条件(cri
- java-给定字符串,删除开始和结尾处的空格,并将中间的多个连续的空格合并成一个。
bylijinnan
java
public class DeleteExtraSpace {
/**
* 题目:给定字符串,删除开始和结尾处的空格,并将中间的多个连续的空格合并成一个。
* 方法1.用已有的String类的trim和replaceAll方法
* 方法2.全部用正则表达式,这个我不熟
* 方法3.“重新发明轮子”,从头遍历一次
*/
public static v
- An error has occurred.See the log file错误解决!
Kai_Ge
MyEclipse
今天早上打开MyEclipse时,自动关闭!弹出An error has occurred.See the log file错误提示!
很郁闷昨天启动和关闭还好着!!!打开几次依然报此错误,确定不是眼花了!
打开日志文件!找到当日错误文件内容:
--------------------------------------------------------------------------
- [矿业与工业]修建一个空间矿床开采站要多少钱?
comsci
地球上的钛金属矿藏已经接近枯竭...........
我们在冥王星的一颗卫星上面发现一些具有开采价值的矿床.....
那么,现在要编制一个预算,提交给财政部门..
- 解析Google Map Routes
dai_lm
google api
为了获得从A点到B点的路劲,经常会使用Google提供的API,例如
[url]
http://maps.googleapis.com/maps/api/directions/json?origin=40.7144,-74.0060&destination=47.6063,-122.3204&sensor=false
[/url]
从返回的结果上,大致可以了解应该怎么走,但
- SQL还有多少“理所应当”?
datamachine
sql
转贴存档,原帖地址:http://blog.chinaunix.net/uid-29242841-id-3968998.html、http://blog.chinaunix.net/uid-29242841-id-3971046.html!
------------------------------------华丽的分割线--------------------------------
- Yii使用Ajax验证时,如何设置某些字段不需要验证
dcj3sjt126com
Ajaxyii
经常像你注册页面,你可能非常希望只需要Ajax去验证用户名和Email,而不需要使用Ajax再去验证密码,默认如果你使用Yii 内置的ajax验证Form,例如:
$form=$this->beginWidget('CActiveForm', array( 'id'=>'usuario-form',&
- 使用git同步网站代码
dcj3sjt126com
crontabgit
转自:http://ued.ctrip.com/blog/?p=3646?tn=gongxinjun.com
管理一网站,最开始使用的虚拟空间,采用提供商支持的ftp上传网站文件,后换用vps,vps可以自己搭建ftp的,但是懒得搞,直接使用scp传输文件到服务器,现在需要更新文件到服务器,使用scp真的很烦。发现本人就职的公司,采用的git+rsync的方式来管理、同步代码,遂
- sql基本操作
蕃薯耀
sqlsql基本操作sql常用操作
sql基本操作
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:30:33 星期一
&
- Spring4+Hibernate4+Atomikos3.3多数据源事务管理
hanqunfeng
Hibernate4
Spring3+后不再对JTOM提供支持,所以可以改用Atomikos管理多数据源事务。Spring2.5+Hibernate3+JTOM参考:http://hanqunfeng.iteye.com/blog/1554251Atomikos官网网站:http://www.atomikos.com/ 一.pom.xml
<dependency>
<
- jquery中两个值得注意的方法one()和trigger()方法
jackyrong
trigger
在jquery中,有两个值得注意但容易忽视的方法,分别是one()方法和trigger()方法,这是从国内作者<<jquery权威指南》一书中看到不错的介绍
1) one方法
one方法的功能是让所选定的元素绑定一个仅触发一次的处理函数,格式为
one(type,${data},fn)
&nb
- 拿工资不仅仅是让你写代码的
lampcy
工作面试咨询
这是我对团队每个新进员工说的第一件事情。这句话的意思是,我并不关心你是如何快速完成任务的,哪怕代码很差,只要它像救生艇通气门一样管用就行。这句话也是我最喜欢的座右铭之一。
这个说法其实很合理:我们的工作是思考客户提出的问题,然后制定解决方案。思考第一,代码第二,公司请我们的最终目的不是写代码,而是想出解决方案。
话粗理不粗。
付你薪水不是让你来思考的,也不是让你来写代码的,你的目的是交付产品
- 架构师之对象操作----------对象的效率复制和判断是否全为空
nannan408
架构师
1.前言。
如题。
2.代码。
(1)对象的复制,比spring的beanCopier在大并发下效率要高,利用net.sf.cglib.beans.BeanCopier
Src src=new Src();
BeanCopier beanCopier = BeanCopier.create(Src.class, Des.class, false);
- ajax 被缓存的解决方案
Rainbow702
JavaScriptjqueryAjaxcache缓存
使用jquery的ajax来发送请求进行局部刷新画面,各位可能都做过。
今天碰到一个奇怪的现象,就是,同一个ajax请求,在chrome中,不论发送多少次,都可以发送至服务器端,而不会被缓存。但是,换成在IE下的时候,发现,同一个ajax请求,会发生被缓存的情况,只有第一次才会被发送至服务器端,之后的不会再被发送。郁闷。
解决方法如下:
① 直接使用 JQuery提供的 “cache”参数,
- 修改date.toLocaleString()的警告
tntxia
String
我们在写程序的时候,经常要查看时间,所以我们经常会用到date.toLocaleString(),但是date.toLocaleString()是一个过时 的API,代替的方法如下:
package com.tntxia.htmlmaker.util;
import java.text.SimpleDateFormat;
import java.util.
- 项目完成后的小总结
xiaomiya
js总结项目
项目完成了,突然想做个总结但是有点无从下手了。
做之前对于客户端给的接口很模式。然而定义好了格式要求就如此的愉快了。
先说说项目主要实现的功能吧
1,按键精灵
2,获取行情数据
3,各种input输入条件判断
4,发送数据(有json格式和string格式)
5,获取预警条件列表和预警结果列表,
6,排序,
7,预警结果分页获取
8,导出文件(excel,text等)
9,修