- 集训DAY7之线性dp与前缀优化/stl优化
心之所向凉月空
c++开发语言数据结构算法
集训DAY7之线性DP与前缀优化/STL优化目录DP的概念与思想核心DP的题目类型线性DP详解DP的优化策略后记DP的概念与思想核心DP的定义DP也就是动态规划(DynamicProgramming)是求解决策过程最优化的过程动态规划主要用于求解以时间划分阶段的动态过程的优化问题DP的基本思想动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中我们常常需要在多个可行解中寻找最优解,其基本思
- 动态规划:数字三角形(线性DP-闫氏DP分析法)
Zephyrtoria
数据结构与算法动态规划java算法
动态规划:数字三角形(线性DP-闫氏DP分析法)数字三角形www.acwing.com/problem/content/900/DP:状态表示:f[i][j]集合:只用前iii层,且用了该层第jjj个数字的所有方案属性:maxvalue状态计算:f[i][j]=max(f[i−1][j−1],f[i−1][j])+arr[i][j]f[i][j]=max(f[i-1][j-1],f[i-1][j]
- 动态规划--每日一练(线性DP:LIS的变形+滑动窗口)
噜噜啦啦~
动态规划动态规划算法
P1725琪露诺目录1.题目描述2.解题思路1.LIS模型与本题的联系2.为什么可以看作LIS变种?3.本题能够清楚的说明动态规划的本质:4.本题的结果计算有别于普通DP:5.本题的优化思想:滑动窗口指路-->优化技巧--滑动窗口-CSDN博客3.代码展示暴力做法(会超时)单调队列法(最优解法)1.题目描述在幻想乡,琪露诺是以笨蛋闻名的冰之妖精。某一天,琪露诺又在玩速冻青蛙,就是用冰把青蛙瞬间冻起
- 石子归并 CSU - 1592 (区间dp,线性dp)
czdb
dpACMdp
现在有n堆石子,第i堆有ai个石子。现在要把这些石子合并成一堆,每次只能合并相邻两个,每次合并的代价是两堆石子的总石子数。求合并所有石子的最小代价。Input第一行包含一个整数T(T#include#include#include#include#defineLLlonglong#defineINF0x3f3f3f3fusingnamespacestd;intdp[100+10][100+10];
- 动态规划——线性DP
没没没没没超疯还是疯了
算法学习动态规划代理模式算法c++学习
动态规划——线性DP最长不下降序列(LIS)暴力搜索:由可行的所有起点出发,搜索出所有的路径。但是深搜的算法时间复杂度要达到O(2n)O(2^n)O(2n)(每个数都有选或不选的两个选择),指数级的时间复杂度在本题中(n≤100n≤100n≤100)显然是不能接受的。那么再观察这个这棵递归树,可以发现其中有很多重复的地方。那么如何优化呢?首先可以使用数组将重复的部分记录下来,此后遇到相同的状态直接
- 动态规划--线性DP
jerrylingj
动态规划动态规划算法c++笔记
引入线性DP就是指状态的转移具有线性递推关系,每个状态只依赖之前的状态,按照线性顺序一步步递推下去。正如之前在背包问题中所写到的,仍旧可以用状态表示和状态计算来解决注意:对于不同类的动态规划问题,核心解题步骤均为状态表示+状态计算,而如何在不同的题型中均捕捉到状态表示和状态计算的方法,才是需要通过刷题慢慢理解体会的例题洛谷B3637最长上升子序列题目描述这是一个简单的动规板子题。给出一个由n(n≤
- 线性DP(动态规划)
E___V___E
动态规划算法
线性DP的概念(视频)学习线性DP之前,请确保已经对递推有所了解。一、概念1、动态规划不要去看网上的各种概念,什么无后效性,什么空间换时间,会越看越晕。从做题的角度去理解就好了,动态规划就可以理解成一个有限状态自动机,从一个初始状态,通过状态转移,跑到终止状态的过程。2、线性动态规划线性动态规划,又叫线性DP,就是在一个线性表上进行动态规划,更加确切的说,应该是状态转移的过程是在线性表上进行的。我
- P1802 五倍经验日【题解】
ʟᴇᴏᴡᴀʏ自动机
题解备战CSP动态规划
CSP临近,蒟蒻准备开始训练DP了qwqqwqqwq题意分析:这是一道类似于010101背包的线性DP,它和一般的背包题唯一的不同点是,当不选择嗑药时,也要算上这种决策的“重量”。所以很容易想出这个DPDPDP的思路:如果我们用F[i][j];i∈[0,n],j∈[0,x].F[i][j];i\in[0,n],j\in[0,x].F[i][j];i∈[0,n],j∈[0,x].来表示对前i
- 数据结构与算法学习笔记----线性DP
明月清了个风
数据结构与算法笔记(基础课)学习笔记动态规划线性DP
数据结构与算法学习笔记----线性DP@@author:明月清了个风@@firstpublishtime:2025.2.15ps⭐️包含了几种常见的线性DP模型——数字三角形,最长上升子序列,最长公共子序列,最短编辑距离。给出了具体思路及证明过程和一些题目代码优化的过程,题目较多。线性动态规划(LinearDynamicProgramming,简称线性DP)是动态规划问题中的一种常见类型,其特点是
- AcWing算法基础课笔记——线性DP
SharkWeek.
AcWing算法笔记c++动态规划
线性DP1.数字三角形题目问题描述给定一个如下图所示的数字三角形,从顶部出发,在每一结点可以选择移动至其左下方的结点或移动至其右下方的结点,一直走到底层,要求找出一条路径,使路径上的数字的和最大。738810274445265输入格式:第一行包含整数n,表示数字三角形的层数。接下来n行,每行包含若干整数,其中第i行表示数字三角形第i层包含的整数。输出格式:输出一个整数,表示最大的路径数字和。数据范
- 动态规划分享之 —— 买卖股票的最佳时机
他们都不看好你,偏偏你最不争气
动态规划算法c++
我今天分享的是关于动态规划中最有名的一组题目——股票买卖问题。为什么选它?因为它覆盖了大部分DP的建模套路,同时题意又很好理解,非常适合入门。DP类型简要说明典型例子1.线性DP当前状态只与前一两个状态有关斐波那契数列、爬楼梯、打家劫舍2.区间DP处理“区间”上问题括号匹配、石子合并3.背包DP决策是否选某个物品01背包、完全背包、多重背包4.树形DP在树结构上处理最优解树的直径、选点问题5.状压
- NO.90十六届蓝桥杯备战|动态规划-区间DP|回文字串|Treats for the Cows|石子合并|248(C++)
ChoSeitaku
蓝桥杯备考蓝桥杯动态规划c++
区间dp也是线性dp的⼀种,它⽤区间的左右端点来描述状态,通过⼩区间的解来推导出⼤区间的解。因此,区间DP的核⼼思想是将⼤区间划分为⼩区间,它的状态转移⽅程通常依赖于区间的划分点。常⽤的划分点的⽅式有两个:基于区间的左右端点,分情况讨论;基于区间上某⼀点,划分成左右区间讨论P1435[IOI2000]回文字串-洛谷先找重复⼦问题定义状态表⽰⼤问题是让整个字符串[1,n]变成回⽂串的最⼩插⼊次数;当
- [leetcode]动态规划:斐波那契数列
亓才孓
leetcode动态规划算法
一.线性dp1.0什么是线性dp线性DP就是指状态的转移具有线性递推关系,每个状态只依赖之前的状态,按照线性顺序一步步递推下去。1.1斐波那契数列问题#include#includeusingnamespacestd;intmain(){intk;cout>k;//初始化向量dp并设置初始值vectordp(k);dp[0]=1;//当k大于1时,设置第二个元素的值if(k>1){dp[1]=1;
- NO.83十六届蓝桥杯备战|动态规划-基础线性DP|台阶问题|最大子段和|传球游戏|乌龟棋(C++)
ChoSeitaku
蓝桥杯备考蓝桥杯动态规划游戏
线性dp是动态规划问题中最基础、最常⻅的⼀类问题。它的特点是状态转移只依赖于前⼀个或前⼏个状态,状态之间的关系是线性的,通常可以⽤⼀维或者⼆维数组来存储状态P1192台阶问题-洛谷斐波那契数列模型状态表⽰:dp[i]表⽰:⾛到i位置的⽅案数。那么dp[n]就是我们要的结果。状态转移⽅程:可以从i−k≤j≤i−1i-k\lej\lei-1i−k≤j≤i−1区间内的台阶⾛到i位置,那么总⽅案数就是所有
- [NOIP 1999 提高组] 导弹拦截
好好学习^按时吃饭
动态规划
题目链接:线性DP代码(O(n^2)时间复杂度):#include#defineintlonglongusingnamespacestd;constintN=1e5+10;intn=0;intarr[N];intdp[N];vectorq;signedmain(){intx;while(cin>>x)arr[++n]=x;//找到最大不上升序列for(inti=1;i=arr[i]){dp[i]=
- 【c++笔试强训】(第四十七篇)
single594
c++开发语言算法java牛客
目录活动安排(贪⼼-区间)题目解析讲解算法原理编写代码合唱团(动态规划-线性dp)题目解析讲解算法原理编写代码活动安排(贪⼼-区间)题目解析1.题目链接:活动安排_牛客题霸_牛客网2.题目描述描述给定nn个活动,每个活动安排的时间为[a_i,b_i)[ai,bi)。求最多可以选择多少个活动,满足选择的活动时间两两之间没有重合。输入描述:第一行输入一个整数nn(1\len\le2\cdot10^51
- 第十四届蓝桥杯大赛软件赛国赛C/C++ 大学 B 组(部分题解)
JIAN LAI
蓝桥杯蓝桥杯c语言c++
文章目录1子2023思路:代码:2双子数思路:代码:3班级活动思路:代码:4合并数列思路:代码:5数三角思路:代码:7AB路线思路:代码:8抓娃娃思路:代码:1子2023思路:比较基础的线性dp代码:#includeusingnamespacestd;#defineIOSios::sync_with_stdio(0),cin.tie(0),cout.tie(0)#defineendl'\n'#de
- 蓝桥杯备赛Day12 动态规划1基础
爱coding的橙子
蓝桥杯蓝桥杯动态规划c++算法
动态规划动态规划基础动态规划将复杂问题分解成很多重叠的子问题,再通过子问题的解得到整个问题的解分析步骤:确定状态:dp[i][j]=val,“到第i个为止,xx为j的方案数/最小代价/最大价值”状态转移方程:确定最终状态要求:(1)最优子结构(2)无后效性:已经求解的子问题,不会再受到后续决策的影响。(3)子问题重叠,将子问题的解存储下来两种思路:(1)按题目线性DP数字三角形学习:(1)将整个大
- 动态规划-第4篇
藤椒味的火腿肠真不错
动态规划算法
19.最⼤⼦数组和(medium)1.题⽬链接:53.最大子数组和-力扣(LeetCode)2..解法(动态规划):算法思路:1.状态表⽰:对于线性dp,我们可以⽤「经验+题⽬要求」来定义状态表⽰:i.以某个位置为结尾,巴拉巴拉;ii.以某个位置为起点,巴拉巴拉。这⾥我们选择⽐较常⽤的⽅式,以「某个位置为结尾」,结合「题⽬要求」,定义⼀个状态表⽰:dp[i]表⽰:以i位置元素为结尾的「所有⼦数组」
- 蓝桥杯常见算法模板(Python组)
-777.
蓝桥杯算法
目录1.二分1.整数二分(二分答案):2.浮点数二分(考不到)2.前缀和、差分1.前缀和一维:二维:2.差分一维:二维:3.贪心4.线性DP1.最长上升子序列(子序列问题一般下标从一开始)2.最长公共子序列3.常见背包模型1.0-1背包2.完全背包3.多重背包4.混合背包5.二维费用背包6.分组背包5.搜索1.DFS模板:1.子集问题2.全排列问题2.BFS6.数据结构1.并查集2.树状数组3.树
- 动态规划之线性DP-安全序列
小丽今天学代码了吗
动态规划算法
问题描述小蓝是工厂里的安全工程师,他负责安放工厂里的危险品。工厂是一条直线,直线上有n个空位,小蓝需要将若干个油桶放置在n个空位上,每2个油桶中间至少需要k个空位隔开,现在小蓝想知道有多少种放置油桶的方案,你可以编写一个程序帮助他吗?由于这个结果很大,你的输出结果需要对取模。输入格式第一行包含两个正整数n,k,分别表示n个空位与k个隔开的空位。输出格式输出共1行,包含1个整数,表示放置的方案数对取
- 蓝桥杯备赛Day3(Python组)——动态规划
Jiayuguo68
蓝桥杯职场和发展
主要考点:线性DP、背包DP、记忆化搜索一、找零兑换问题1.递归解法defrecMC(coinValuelist,change):minCoins=change#最少零钱个数ifchangeincoinValuelist:#递归边界是四种单位零钱return1else:foriin[cforcincoinValuelistifc0:#记忆数组中有,直接用最优解returnknownResults[
- 【算法】动态规划专题② ——LIS(最长递增子序列) python
查理零世
算法动态规划python
目录前置知识问题描述DP解法小试牛刀举一反三实战演练总结前置知识【算法】动态规划专题①——线性DPpython问题描述题目是说:给定一个整数数组,找到其中最长的严格递增子序列的长度。(子序列不要求连续)比如说,像数组[10,9,2,5,3,7,101,18],最长递增子序列是[2,5,7,101],所以长度是4。那要怎么做呢?DP解法对于每个元素,遍历它前面的所有元素,如果前面的元素比它小,那么就
- (每日一题)连续⼦数组最⼤和———<动态规划-线性dp>
课堂随笔
每日一题动态规划算法考研每日一题
1.题⽬链接:DP6连续⼦数组最⼤和2.题⽬描述:3.解法:算法思路:简单线性dp。i.状态表⽰:dp[i]表⽰:以i位置为结尾的所有⼦数组中,最⼤和是多少。ii.状态转移⽅程:dp[i]=max(dp[i-1]+arr[i],arr[i])C++算法代码:#include#includeusingnamespacestd;intmain(){//初始化intn;cin>>n;vectortemp
- DP优化专题
pytKonnyaku
算法动态规划
文章目录倍增优化DP[NOIP2012提高组]开车旅行题目描述输入格式输出格式数据结构优化DP清理班次2赤壁之战估算单调队列优化DP[SCOI2010]股票交易题目描述裁剪序列单调队列优化多重背包斜率优化DPⅠ状态转移方程Ⅱ决策点关系Ⅲ凸壳Ⅳ维护答案Ⅴ特殊性Ⅵ模板CodeⅦ注意事项K匿名序列四边形不等式优化DP定义:定理:一维线性DP的四边形不等式优化决策单调性定理二维四边形不等式优化DP决策单调
- 蓝桥杯备赛笔记(九)动态规划(一)
小魏´•ﻌ•`
蓝桥杯C++蓝桥杯笔记动态规划
1.动态规划基础(1)线性DP1)什么是DP(动态规划)DP(动态规划)全称DynamicProgramming,是运筹学的一个分支,是一种将复杂问题分解成很多重叠的子问题,并通过子问题的解得到整个问题的解的算法。在动态规划中有一些概念:状态:就是形如dp[i][j]=val的取值,其中i,j为下标,也是用于描述、确定状态所需的变量,val为状态值。状态转移:状态与状态之间的转移关系,一般可以表示
- 算法第十六期——动态规划(DP)之线性DP
小叶pyか
算法动态规划
【概述】线性动态规划,是较常见的一类动态规划问题,其是在线性结构上进行状态转移,这类问题不像背包问题、区间DP等有固定的模板。线性动态规划的目标函数为特定变量的线性函数,约束是这些变量的线性不等式或等式,目的是求目标函数的最大值或最小值。因此,除了少量问题(如:LIS、LCS、LCIS等)有固定的模板外,大部分都要根据实际问题来推导得出答案。【例题】最长公共子序列(LCS)lanqiao0J题号1
- 【Java】零基础蓝桥杯算法学习——线性动态规划(一维dp)
xioaobai_huan
蓝桥杯算法入门学习算法蓝桥杯学习java
线性dp——一维动态规划1、考虑最后一步可以由哪些状态得到,推出转移方程2、考虑当前状态与哪些参数有关系,定义几维数组来表示当前状态3、计算时间复杂度,判断是否需要进行优化。一维动态规划例题:最大上升子序列问题Java参考代码:importjava.util.Scanner;publicclassMain{publicstaticvoidmain(String[]args){Scannerscan
- C++算法之动态规划(ACWING题目)
wz_fisher
算法c++动态规划
动态规划时间复杂度:状态数量*转移计算量线性DP一.数字三角形动态规划:1.状态表示:集合:f[i,j]表示所有从起点走到(i,j)的路径属性:所有路径上的数字之和的最大值2.状态计算:如何得到f[i,j]?从左边路径走到和从右边路径走到从左边路径走到该点:f[i-1,j-1]+a[i,j]从右边路径走到该点:f[i-1,j]+a[i,j];for(inti=0;i>1;//二分中取的是l=mid
- 算法专题:线性DP
Q天马A行空Q
算法导论算法leetcode线性DP
参考练习习题总集文章目录10.正则表达式匹配44.通配符匹配45.跳跃游戏II53.最大子数组和(LCR161连续天数的最高销售额)91.解码方法97.交错字符串115.不同的子序列119.杨辉三角II198.打家劫舍(LCR089打家劫舍)213.打家劫舍II(LCR090打家劫舍II)10.正则表达式匹配第一道题就是困难题让我很难蚌,真是磨人啊。classSolution{public:boo
- VMware Workstation 11 或者 VMware Player 7安装MAC OS X 10.10 Yosemite
iwindyforest
vmwaremac os10.10workstationplayer
最近尝试了下VMware下安装MacOS 系统,
安装过程中发现网上可供参考的文章都是VMware Workstation 10以下, MacOS X 10.9以下的文章,
只能提供大概的思路, 但是实际安装起来由于版本问题, 走了不少弯路, 所以我尝试写以下总结, 希望能给有兴趣安装OSX的人提供一点帮助。
写在前面的话:
其实安装好后发现, 由于我的th
- 关于《基于模型驱动的B/S在线开发平台》源代码开源的疑虑?
deathwknight
JavaScriptjava框架
本人从学习Java开发到现在已有10年整,从一个要自学 java买成javascript的小菜鸟,成长为只会java和javascript语言的老菜鸟(个人邮箱:
[email protected])
一路走来,跌跌撞撞。用自己的三年多业余时间,瞎搞一个小东西(基于模型驱动的B/S在线开发平台,非MVC框架、非代码生成)。希望与大家一起分享,同时有许些疑虑,希望有人可以交流下
平台
- 如何把maven项目转成web项目
Kai_Ge
mavenMyEclipse
创建Web工程,使用eclipse ee创建maven web工程 1.右键项目,选择Project Facets,点击Convert to faceted from 2.更改Dynamic Web Module的Version为2.5.(3.0为Java7的,Tomcat6不支持). 如果提示错误,可能需要在Java Compiler设置Compiler compl
- 主管???
Array_06
工作
转载:http://www.blogjava.net/fastzch/archive/2010/11/25/339054.html
很久以前跟同事参加的培训,同事整理得很详细,必须得转!
前段时间,公司有组织中高阶主管及其培养干部进行了为期三天的管理训练培训。三天的课程下来,虽然内容较多,因对老师三天来的课程内容深有感触,故借着整理学习心得的机会,将三天来的培训课程做了一个
- python内置函数大全
2002wmj
python
最近一直在看python的document,打算在基础方面重点看一下python的keyword、Build-in Function、Build-in Constants、Build-in Types、Build-in Exception这四个方面,其实在看的时候发现整个《The Python Standard Library》章节都是很不错的,其中描述了很多不错的主题。先把Build-in Fu
- JSP页面通过JQUERY合并行
357029540
JavaScriptjquery
在写程序的过程中我们难免会遇到在页面上合并单元行的情况,如图所示
如果对于会的同学可能很简单,但是对没有思路的同学来说还是比较麻烦的,提供一下用JQUERY实现的参考代码
function mergeCell(){
var trs = $("#table tr");
&nb
- Java基础
冰天百华
java基础
学习函数式编程
package base;
import java.text.DecimalFormat;
public class Main {
public static void main(String[] args) {
// Integer a = 4;
// Double aa = (double)a / 100000;
// Decimal
- unix时间戳相互转换
adminjun
转换unix时间戳
如何在不同编程语言中获取现在的Unix时间戳(Unix timestamp)? Java time JavaScript Math.round(new Date().getTime()/1000)
getTime()返回数值的单位是毫秒 Microsoft .NET / C# epoch = (DateTime.Now.ToUniversalTime().Ticks - 62135
- 作为一个合格程序员该做的事
aijuans
程序员
作为一个合格程序员每天该做的事 1、总结自己一天任务的完成情况 最好的方式是写工作日志,把自己今天完成了什么事情,遇见了什么问题都记录下来,日后翻看好处多多
2、考虑自己明天应该做的主要工作 把明天要做的事情列出来,并按照优先级排列,第二天应该把自己效率最高的时间分配给最重要的工作
3、考虑自己一天工作中失误的地方,并想出避免下一次再犯的方法 出错不要紧,最重
- 由html5视频播放引发的总结
ayaoxinchao
html5视频video
前言
项目中存在视频播放的功能,前期设计是以flash播放器播放视频的。但是现在由于需要兼容苹果的设备,必须采用html5的方式来播放视频。我就出于兴趣对html5播放视频做了简单的了解,不了解不知道,水真是很深。本文所记录的知识一些浅尝辄止的知识,说起来很惭愧。
视频结构
本该直接介绍html5的<video>的,但鉴于本人对视频
- 解决httpclient访问自签名https报javax.net.ssl.SSLHandshakeException: sun.security.validat
bewithme
httpclient
如果你构建了一个https协议的站点,而此站点的安全证书并不是合法的第三方证书颁发机构所签发,那么你用httpclient去访问此站点会报如下错误
javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorException: PKIX path bu
- Jedis连接池的入门级使用
bijian1013
redisredis数据库jedis
Jedis连接池操作步骤如下:
a.获取Jedis实例需要从JedisPool中获取;
b.用完Jedis实例需要返还给JedisPool;
c.如果Jedis在使用过程中出错,则也需要还给JedisPool;
packag
- 变与不变
bingyingao
不变变亲情永恒
变与不变
周末骑车转到了五年前租住的小区,曾经最爱吃的西北面馆、江西水饺、手工拉面早已不在,
各种店铺都换了好几茬,这些是变的。
三年前还很流行的一款手机在今天看起来已经落后的不像样子。
三年前还运行的好好的一家公司,今天也已经不复存在。
一座座高楼拔地而起,
- 【Scala十】Scala核心四:集合框架之List
bit1129
scala
Spark的RDD作为一个分布式不可变的数据集合,它提供的转换操作,很多是借鉴于Scala的集合框架提供的一些函数,因此,有必要对Scala的集合进行详细的了解
1. 泛型集合都是协变的,对于List而言,如果B是A的子类,那么List[B]也是List[A]的子类,即可以把List[B]的实例赋值给List[A]变量
2. 给变量赋值(注意val关键字,a,b
- Nested Functions in C
bookjovi
cclosure
Nested Functions 又称closure,属于functional language中的概念,一直以为C中是不支持closure的,现在看来我错了,不过C标准中是不支持的,而GCC支持。
既然GCC支持了closure,那么 lexical scoping自然也支持了,同时在C中label也是可以在nested functions中自由跳转的
- Java-Collections Framework学习与总结-WeakHashMap
BrokenDreams
Collections
总结这个类之前,首先看一下Java引用的相关知识。Java的引用分为四种:强引用、软引用、弱引用和虚引用。
强引用:就是常见的代码中的引用,如Object o = new Object();存在强引用的对象不会被垃圾收集
- 读《研磨设计模式》-代码笔记-解释器模式-Interpret
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 解释器(Interpreter)模式的意图是可以按照自己定义的组合规则集合来组合可执行对象
*
* 代码示例实现XML里面1.读取单个元素的值 2.读取单个属性的值
* 多
- After Effects操作&快捷键
cherishLC
After Effects
1、快捷键官方文档
中文版:https://helpx.adobe.com/cn/after-effects/using/keyboard-shortcuts-reference.html
英文版:https://helpx.adobe.com/after-effects/using/keyboard-shortcuts-reference.html
2、常用快捷键
- Maven 常用命令
crabdave
maven
Maven 常用命令
mvn archetype:generate
mvn install
mvn clean
mvn clean complie
mvn clean test
mvn clean install
mvn clean package
mvn test
mvn package
mvn site
mvn dependency:res
- shell bad substitution
daizj
shell脚本
#!/bin/sh
/data/script/common/run_cmd.exp 192.168.13.168 "impala-shell -islave4 -q 'insert OVERWRITE table imeis.${tableName} select ${selectFields}, ds, fnv_hash(concat(cast(ds as string), im
- Java SE 第二讲(原生数据类型 Primitive Data Type)
dcj3sjt126com
java
Java SE 第二讲:
1. Windows: notepad, editplus, ultraedit, gvim
Linux: vi, vim, gedit
2. Java 中的数据类型分为两大类:
1)原生数据类型 (Primitive Data Type)
2)引用类型(对象类型) (R
- CGridView中实现批量删除
dcj3sjt126com
PHPyii
1,CGridView中的columns添加
array(
'selectableRows' => 2,
'footer' => '<button type="button" onclick="GetCheckbox();" style=&
- Java中泛型的各种使用
dyy_gusi
java泛型
Java中的泛型的使用:1.普通的泛型使用
在使用类的时候后面的<>中的类型就是我们确定的类型。
public class MyClass1<T> {//此处定义的泛型是T
private T var;
public T getVar() {
return var;
}
public void setVa
- Web开发技术十年发展历程
gcq511120594
Web浏览器数据挖掘
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- openSession()与getCurrentSession()区别:
hetongfei
javaDAOHibernate
来自 http://blog.csdn.net/dy511/article/details/6166134
1.getCurrentSession创建的session会和绑定到当前线程,而openSession不会。
2. getCurrentSession创建的线程会在事务回滚或事物提交后自动关闭,而openSession必须手动关闭。
这里getCurrentSession本地事务(本地
- 第一章 安装Nginx+Lua开发环境
jinnianshilongnian
nginxluaopenresty
首先我们选择使用OpenResty,其是由Nginx核心加很多第三方模块组成,其最大的亮点是默认集成了Lua开发环境,使得Nginx可以作为一个Web Server使用。借助于Nginx的事件驱动模型和非阻塞IO,可以实现高性能的Web应用程序。而且OpenResty提供了大量组件如Mysql、Redis、Memcached等等,使在Nginx上开发Web应用更方便更简单。目前在京东如实时价格、秒
- HSQLDB In-Process方式访问内存数据库
liyonghui160com
HSQLDB一大特色就是能够在内存中建立数据库,当然它也能将这些内存数据库保存到文件中以便实现真正的持久化。
先睹为快!
下面是一个In-Process方式访问内存数据库的代码示例:
下面代码需要引入hsqldb.jar包 (hsqldb-2.2.8)
import java.s
- Java线程的5个使用技巧
pda158
java数据结构
Java线程有哪些不太为人所知的技巧与用法? 萝卜白菜各有所爱。像我就喜欢Java。学无止境,这也是我喜欢它的一个原因。日常
工作中你所用到的工具,通常都有些你从来没有了解过的东西,比方说某个方法或者是一些有趣的用法。比如说线程。没错,就是线程。或者确切说是Thread这个类。当我们在构建高可扩展性系统的时候,通常会面临各种各样的并发编程的问题,不过我们现在所要讲的可能会略有不同。
- 开发资源大整合:编程语言篇——JavaScript(1)
shoothao
JavaScript
概述:本系列的资源整合来自于github中各个领域的大牛,来收藏你感兴趣的东西吧。
程序包管理器
管理javascript库并提供对这些库的快速使用与打包的服务。
Bower - 用于web的程序包管理。
component - 用于客户端的程序包管理,构建更好的web应用程序。
spm - 全新的静态的文件包管
- 避免使用终结函数
vahoa.ma
javajvmC++
终结函数(finalizer)通常是不可预测的,常常也是很危险的,一般情况下不是必要的。使用终结函数会导致不稳定的行为、更差的性能,以及带来移植性问题。不要把终结函数当做C++中的析构函数(destructors)的对应物。
我自己总结了一下这一条的综合性结论是这样的:
1)在涉及使用资源,使用完毕后要释放资源的情形下,首先要用一个显示的方