因为用matalb较多,刚接触pyton很多代码不懂,给出一些注释。只注释部分函数,不解释算法。
对算法的详细注释请参考:k-近邻算法(k-Nearest Neighbor) http://m.blog.csdn.net/article/details?id=52032520&from=singlemessage&isappinstalled=0
'''
Created on Sep 16, 2010
kNN: k Nearest Neighbors
Input: inX: vector to compare to existing dataset (1xN)
dataSet: size m data set of known vectors (NxM)
labels: data set labels (1xM vector)
k: number of neighbors to use for comparison (should be an odd number)
Output: the most popular class label
@author: pbharrin
'''
from numpy import *
import operator
from os import listdir
#这个listdir是用来列出文档路径的
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
#dataSet.shape[0],类似于matalb里的size(dataSet,1)
diffMat = tile(inX, (dataSetSize,1)) - dataSet
#tile类似于matalb里的repmat tile([1,1],(2,2))就是把【1,1】复制成两行两列的矩阵
sqDiffMat = diffMat**2
#这的**就是求平方,但***不是求3次方
#程序写到此处相当于求了个欧式距离
sqDistances = sqDiffMat.sum(axis=1)
#a.sum(),对矩阵a里所有元素求和,a.sum(axis=1),对每一行求和,a.sum(axis=0)对每一列求和
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
#argsort()是用来排序的函数 ,还有几个sort sorted这个多百度多看看,我试验半天没明白,最后还是得百度
classCount={}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
def createDataSet():
group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = ['A','A','B','B']
return group, labels
def file2matrix(filename):
fr = open(filename)
numberOfLines = len(fr.readlines()) #get the number of lines in the file
returnMat = zeros((numberOfLines,3)) #prepare matrix to return
#生成了一个numberOfLines*3的矩阵
classLabelVector = [] #prepare labels return
fr = open(filename)
index = 0
for line in fr.readlines():
line = line.strip()
listFromLine = line.split('\t')
returnMat[index,:] = listFromLine[0:3]
classLabelVector.append(int(listFromLine[-1]))
index += 1
return returnMat,classLabelVector
def autoNorm(dataSet):
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
#这个0,返回每一列的最值
ranges = maxVals - minVals
normDataSet = zeros(shape(dataSet))
#后面的归一化跟matalb里.\一个样子,就是不知道python自带这种功能不
m = dataSet.shape[0]
normDataSet = dataSet - tile(minVals, (m,1))
normDataSet = normDataSet/tile(ranges, (m,1)) #element wise divide
return normDataSet, ranges, minVals
def datingClassTest():
hoRatio = 0.50 #hold out 10%
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt') #load data setfrom file
normMat, ranges, minVals = autoNorm(datingDataMat)
m = normMat.shape[0]
numTestVecs = int(m*hoRatio)
#这里int是向下取整,比如int(3*0.6)=1
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i])
if (classifierResult != datingLabels[i]): errorCount += 1.0
print "the total error rate is: %f" % (errorCount/float(numTestVecs))
print errorCount
#下面是读入32*32的图,变成1*1024的向量,图像处理不感兴趣,不看
def img2vector(filename):
returnVect = zeros((1,1024))
fr = open(filename)
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect[0,32*i+j] = int(lineStr[j])
return returnVect
#手写识别
def handwritingClassTest():
hwLabels = []
trainingFileList = listdir('trainingDigits') #load the training set
m = len(trainingFileList)
trainingMat = zeros((m,1024))
%这个listdir跟matalb的dir不一样,matalb从第三个开始,这个直接从第一个开始了
for i in range(m):
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0] #take off .txt
classNumStr = int(fileStr.split('_')[0])
hwLabels.append(classNumStr)
trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
testFileList = listdir('testDigits') #iterate through the test set
errorCount = 0.0
mTest = len(testFileList)
for i in range(mTest):
fileNameStr = testFileList[i]
fileStr = fileNameStr.split('.')[0] #take off .txt
classNumStr = int(fileStr.split('_')[0])
vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr)
if (classifierResult != classNumStr): errorCount += 1.0
print "\nthe total number of errors is: %d" % errorCount
print "\nthe total error rate is: %f" % (errorCount/float(mTest))