算法竞赛专题解析(1):二分法、三分法

本系列文章将于2021年整理出版,书名《算法竞赛专题解析》。
前驱教材:《算法竞赛入门到进阶》 清华大学出版社 2019.8
网购:京东 当当      作者签名书

如有建议,请加QQ 群:567554289,或联系作者QQ:15512356

文章目录

  • 1. 二分法的理论背景
  • 2. 整数二分模板
    • 2.1 基本形式
    • 2.2 STL的lower_bound()和upper_bound()
    • 2.3 简单例题
  • 3. 整数二分典型题目
    • 3.1 最大值最小化(最大值尽量小
    • 3.1.1序列划分问题
      • 3.1.2 通往奥格瑞玛的道路
    • 3.2 最小值最大化(最小值尽量大)
  • 4. 实数二分
    • 4.1 基本形式
    • 4.2 实数二分例题
  • 5. 二分法习题
  • 6. 三分法求极值
    • 6.1 原理
    • 6.2 实数三分
      • 6.2.1 实数三分习题
    • 6.3 整数三分

  二分法和三分法是算法竞赛中常见的算法思路,本文介绍了它们的理论背景、模板代码、典型题目。

1. 二分法的理论背景

  在《计算方法》教材中,关于非线性方程的求根问题,有一种是二分法。
  方程求根是常见的数学问题,满足方程:
          f(x) = 0              (1-1)
  的数x’称为方程(1-1)的根。
  所谓非线性方程,是指f(x)中含有三角函数、指数函数或其他超越函数。这种方程,很难或者无法求得精确解。不过,在实际应用中,只要得到满足一定精度要求的近似解就可以了,此时,需要考虑2个问题:
  (1)根的存在性。用这个定理判定:设函数在闭区间[a, b]上连续,且f(a) ∙ f(b) < 0,则f(x) = 0存在根。
  (2)求根。一般有两种方法:搜索法、二分法。
  搜索法:把区间[a, b]分成n等份,每个子区间长度是∆x,计算点xk = a + k∆x (k=0,1,2,3,4,…,n)的函数值f(xk),若f(xk) = 0,则是一个实根,若相邻两点满足f(xk) ∙ f(xk+1) < 0,则在(xk, xk+1)内至少有一个实根,可以取(xk+ xk+1)/2为近似根。
  二分法:如果确定f(x)在区间[a, b]内连续,且f(a) ∙ f(b) < 0,则至少有一个实根。二分法的操作,就是把[a, b]逐次分半,检查每次分半后区间两端点函数值符号的变化,确定有根的区间。
  什么情况下用二分?两个条件:上下界[a, b]确定、函数在[a, b]内单调

算法竞赛专题解析(1):二分法、三分法_第1张图片
图1.1 单调函数

  复杂度:经过n次二分后,区间会缩小到(b - a)/2n。给定a、b和精度要求ε,可以算出二分次数n,即满足(b - a)/2n <ε。所以,二分法的复杂度是O(logn)的。例如,如果函数在区间[0, 100000]内单调变化,要求根的精度是10-8,那么二分次数是44次。
  二分非常高效。所以,如果问题是单调性的,且求解精确解的难度很高,可以考虑用二分法。
  在算法竞赛题目中,有两种题型:整数二分、实数二分。整数域上的二分,注意终止边界、左右区间的开闭情况,避免漏掉答案或者死循环。实数域上的二分,需要注意精度问题。

2. 整数二分模板

2.1 基本形式

  先看一个简单问题:在有序数列a[]中查找某个数x;如果数列中没有x,找它的后继。通过这个问题,给出二分法的基本代码。
  如果有x,找第一个x的位置;如果没有x,找比x大的第一个数的位置。

图2.1 (a)数组中有x         (b)数组中没有x

  示例:a[] = {-12,-6,-4,3,5,5,8,9},其中有n = 8个数,存储在a[0]~a[7]。
  1)查找x = -5,返回位置2,指向a[2] = -4;
  2)查找x = 7,返回位置6,指向a[6] = 8;
  3)特别地,如果x 大于最大的a[7] = 9,例如x = 12,返回位置8。由于不存在a[8],所以此时是越界的。
  下面是模板代码。

查找大于等于 x的最小的一个的位置(x或者x的后继)
int bin_search(int *a, int n, int x){     //a[0]~a[n-1]是单调递增的
    int left = 0, right = n;              //注意:不是 n-1
    while (left < right) {
        int mid = left + (right-left)/2;  //int mid = (left + right) >> 1;  
        if (a[mid] >= x)  right = mid;
        else    left = mid + 1;
    }                    //终止于left = right
    return left;          //特殊情况:a[n-1] < x时,返回n
}

  下面对上述代码进行补充说明:
  (1)代码执行完毕后,left==right,两者相等,即答案所处的位置。
  (2)复杂度:每次把搜索的范围缩小一半,总次数是log(n)。
  (3)中间值mid
   中间值写成mid = left + (right-left)/2 或者mid = (left + right) >> 1都行 [参考李煜东《算法竞赛进阶指南》26页,有mid = (left + right) >> 1的细节解释]。不过,如果left + right很大,可能溢出,用前一种更好。
  不能写成 mid = (left + right)/2; 在有负数的情况下,会出错。
  (4)对比测试
  bin_search()和STL的lower_bound()的功能是一样的。下面的测试代码,比较了bin_search()和lower_bound()的输出,以此证明bin_search()的正确性。注意,当a[n-1]   代码执行以下步骤:
  1)生成随机数组a[];
  2)用sort()排序;
  3)生成一个随机的x;
  4)分别用bin_search()和lower_bound()在a[]中找x;
  5)比较它们的返回值是否相同。

bin_search()和lower_bound()对比测试
#include
using namespace std;
#define MAX   100    //试试10000000
#define MIN  -100
int a[MAX];          //如果MAX超过100万,大数组a[MAX]最好定义为全局。
//大数组定义在全局的原因是:有的评测环境,栈空间很小,大数组定义在局部占用了栈空间导致爆栈。
//现在各大OJ和比赛都会设置编译命令使栈空间等于内存大小,不会出现爆栈。

unsigned long ulrand(){          //生成一个大随机数
    return (
      (((unsigned long)rand()<<24)& 0xFF000000ul)
     |(((unsigned long)rand()<<12)& 0x00FFF000ul)
     |(((unsigned long)rand())    & 0x00000FFFul));
}

int bin_search(int *a, int n, int x){    //a[0]~a[n-1]是有序的
    int left = 0, right = n;             //不是 n-1
    while (left < right) {
        int mid = left+(right-left)/2;   //int mid = (left+ right)>>1;
        if (a[mid] >= x)  right = mid;
        else    left = mid + 1;
    }
   return left;       //特殊情况:如果最后的a[n-1] < key,left = n
}

int main(){
    int n = MAX;
    srand(time(0));
    while(1){
        for(int i=0; i< n; i++)   //产生[MIN, MAX]内的随机数,有正有负
            a[i] = ulrand() % (MAX-MIN + 1) + MIN;
        sort(a, a + n );       //排序,a[0]~a[n-1]

        int test = ulrand() % (MAX-MIN + 1) + MIN; //产生一个随机的x
        int ans = bin_search(a,n,test);
        int pos = lower_bound(a,a+n,test)-a;  

        //比较bin_search()和lower_bound()的输出是否一致:
        if(ans == pos) cout << "!";             //正确
        else        {  cout << "wrong"; break;} //有错,退出
    }
}

2.2 STL的lower_bound()和upper_bound()

  如果只是简单地找x或x附近的数,就用STL的lower_bound()和upper_bound()函数。有以下情况:
  (1)查找第一个大于x的元素的位置:upper_bound()。代码例如:
        pos = upper_bound(a, a+n, test) - a;
  (2)查找第一个等于或者大于x的元素:lower_bound()。
  (3)查找第一个与x相等的元素:lower_bound()且 = x。
  (4)查找最后一个与x相等的元素:upper_bound()的前一个且 = x。
  (5)查找最后一个等于或者小于x的元素:upper_bound()的前一个。
  (6)查找最后一个小于x的元素:lower_bound()的前一个。
  (7)单调序列中数x的个数:upper_bound() - lower_bound()。

2.3 简单例题

  寻找指定和的整数对。这是一个非常直接的二分法问题。
  ∎问题描述
  输入n ( n≤100,000)个整数,找出其中的两个数,它们之和等于整数m(假定肯定有解)。题中所有整数都能用int 表示。
  ∎题解
  下面给出三种方法:
  (1)暴力搜,用两重循环,枚举所有的取数方法,复杂度O(n^2)。超时。
  (2)二分法。首先对数组从小到大排序,复杂度O(nlogn);然后,从头到尾处理数组中的每个元素a[i],在a[i]后面的数中二分查找是否存在一个等于 m - a[i]的数,复杂度也是O(nlogn)。两部分相加,总复杂度仍然是O(nlogn)。
  (3)尺取法/双指针/two pointers。对于这个特定问题,更好的、标准的算法是:首先对数组从小到大排序;然后,设置两个变量L和R,分别指向头和尾,L初值是0,R初值是n-1,检查a[L]+a[R],如果大于m,就让R减1,如果小于m,就让L加1,直至a[L]+a[R] = m。排序复杂度O(nlogn),检查的复杂度O(n),总复杂度O(nlogn)。检查的代码这样写:

void find_sum(int a[], int n, int m){ 
     sort(a, a + n - 1);      //先排序
     int L = 0, R = n - 1;    //L指向头,R指向尾
     while (L < R){
		    int sum = a[L] + a[R];
		    if (sum > m)   R--;
		    if (sum < m)   L++;
		    if (sum == m){     
			    cout << a[L] << "    " << a[R] << endl;  //打印一种情况
                L++;   //可能有多种情况,继续
		    }
	  }
}

3. 整数二分典型题目

  上面给出的二分法代码bin_search(),处理的是简单的数组查找问题。从这个例子,我们能学习到二分法的思想。
  在用二分法的典型题目中,主要是用二分法思想来进行判定。它的基本形式是:

while (left < right) {
        int ans;          //记录答案
        int mid = left+(right-left)/2;   //二分
        if (check(mid)){  //检查条件,如果成立
            ans = mid;    //记录答案//移动left(或right)
        }
        else//移动right(或left)
}

  所以,二分法的难点在于如何建模和check()条件,其中可能会套用其他算法或者数据结构。
  二分法的典型应用有:最小化最大值、最大化最小值。

3.1 最大值最小化(最大值尽量小

3.1.1序列划分问题

  这是典型的最大值最小化问题。
  ∎题目描述
  例如,有一个序列{2,2,3,4,5,1},将其划分成3个连续的子序列S(1)、S(2)、S(3),每个子序列最少有一个元素,要求使得每个子序列的和的最大值最小。
  下面举例2个分法:
  分法1:S(1)、S(2)、S(3)分别是(2,2,3)、(4,5)、(1),子序列和分别是7、9、1,最大值是9;
  分法2:(2,2,3)、(4)、(5,1),子序列和是7、4、6,最大值是7。
  分法2更好。
  ∎题解
  在一次划分中,考虑一个x,使x满足:对任意的S(i),都有S(i)<=x,也就是说,x是所有S(i)中的最大值。题目需要求的就是找到这个最小的x。这就是最大值最小化
  如何找到这个x?从小到大一个个地试,就能找到那个最小的x。
  简单的办法是:枚举每一个x,用贪心法每次从左向右尽量多划分元素,S(i)不能超过x,划分的子序列个数不超过m个。这个方法虽然可行,但是枚举所有的x太浪费时间了。
  改进的办法是:用二分法在[max, sum]中间查找满足条件的x,其中max是序列中最大元素,sum是所有元素的和。

3.1.2 通往奥格瑞玛的道路

  “通往奥格瑞玛的道路”,来源:https://www.luogu.org/problem/P1462
  ∎题目描述
  给定无向图,n个点,m条双向边,每个点有点权fi(这个点的过路费),有边权ci(这条路的血量)。求起点1到终点N的所有可能路径中,在总边权(总血量)不超过给定的b的前提下,所经过的路径中最大点权(这条路径上过路费最大的那个点)的最小值是多少。
  题目数据:n≤10000,m≤50000,fi,ci,B≤1e9。
  ∎题解
  对点权fi进行二分,用dijkstra求最短路,检验总边权是否小于b。二分法是最小化最大值问题。
  这一题是二分法和最短路算法的简单结合。
  (1)对点权(过路费)二分。题目的要求是:从1到N有很多路径,其中的一个可行路径Pi,它有一个点的过路费最大,记为Fi;在所有可行路径中,找到那个有最小F的路径,输出F。解题方案是:先对所有点的fi排序,然后用二分法,找符合要求的最小的fi。二分次数log(fi)=log(1e9) < 30。
  (2)在检查某个fi时,删除所有大于fi的点,在剩下的点中,求1到N的最短路,看总边权是否小于b,如果满足,这个fi是合适的(如果最短路的边权都大于b,那么其他路径的总边权就更大,肯定不符合要求)。一次Dijkstra求最短路,复杂度是O(mlogn)。
  总复杂度满足要求。

3.2 最小值最大化(最小值尽量大)

  ∎题目描述
  “进击的奶牛”,来源:https://www.luogu.org/problem/P1824
  在一条很长的直线上,指定n个坐标点(x1, …, xn)。有c头牛,安排每头牛站在其中一个点(牛棚)上。这些牛喜欢打架,所以尽量距离远一些。问最近的两头牛之间距离的最大值可以是多少。
  这个题目里,所有的牛棚两两之间的距离有个最小值,题目要求使得这个最小值最大化。
  ∎题解
  (1)暴力法。从小到大枚举最小距离的值dis,然后检查,如果发现有一次不行,那么上次枚举的就是最大值。如何检查呢?用贪心法:第一头牛放在x1,第二头牛放在xj≥x1+dis的点xi,第三头牛放在xk≥xj+dis的点xk,等等,如果在当前最小距离下,不能放c条牛,那么这个dis就不可取。复杂度O(nc)。
  (2)二分。分析从小到大检查dis的过程,发现可以用二分的方法找这个dis。这个dis符合二分法:它有上下边界、它是单调递增的。复杂度O(nlogn)。

#include
using namespace std;
int n,c,x[100005];//牛棚数量,牛数量,牛棚坐标

bool check(int dis){     //当牛之间距离最小为dis时,检查牛棚够不够
    int cnt=1, place=0;  //第1头牛,放在第1个牛棚
    for (int i = 1; i < n; ++i)     //检查后面每个牛棚
        if (x[i] - x[place] >= dis){ //如果距离dis的位置有牛棚
            cnt++;      //又放了一头牛
            place = i;  //更新上一头牛的位置
        }
    if (cnt >= c) return true;   //牛棚够
    else          return false;  //牛棚不够
}

int main(){
    scanf("%d%d",&n, &c);
    for(int i=0;i<n;i++)    scanf("%d",&x[i]);
    sort(x,x+n);             //对牛棚的坐标排序
    int left=0, right=x[n-1]-x[0];  //R=1000000也行,因为是log(n)的,很快
							        //优化:把二分上限设置为1e9/c
    int ans = 0;
    while(left < right){
        int mid = left + (right - left)/2;     //二分
        if(check(mid)){       //当牛之间距离最小为mid时,牛棚够不够?
            ans = mid;        //牛棚够,先记录mid
            left = mid + 1;   //扩大距离
           }
        else
            right = mid;      //牛棚不够,缩小距离
    }

    cout << ans;              //打印答案
    return 0;
}

4. 实数二分

4.1 基本形式

  实数域上的二分,比整数二分简单。
  

实数二分的基本形式

const double eps =1e-7;        //精度。如果下面用for,可以不要eps
while(right - left > eps){     //for(int i = 0; i<100; i++){
      double mid = left+(right-left)/2;
      if (check(mid)) right = mid;           //判定,然后继续二分
      else            left  = mid;
}

  其中,循环用2种方法都可以:

  while(right - left > eps)   { ... }
  或者:
  for(int i = 0; i < 100; i++) { ... }

  如果用for循环,由于循环内用了二分,执行100次,相当于实现了 1/2100的精度,一般比eps更精确。
  for循环的100次,比while的循环次数要多。如果时间要求不是太苛刻,用for循环更简便[参考李煜东《算法竞赛进阶指南》27页的说明]。

4.2 实数二分例题

  ∎题目描述
  “Pie”,题目来源:http://poj.org/problem?id=3122
  主人过生日,m个人来庆生,有n块半径不同的圆形蛋糕,由m+1个人(加上主人)分,每人的蛋糕必须一样重,而且是一整块(不能是几个蛋糕碎块,也就是说,每个人的蛋糕都是从一块圆蛋糕中切下来的完整一块)。问每个人能分到的最大蛋糕是多大。
  ∎题解
  最小值最大化问题。设每人能分到的蛋糕大小是x,用二分法枚举x。 

“Pie”题的代码

#include
#include
double PI = acos(-1.0);    //3.141592653589793;
#define eps 1e-5
double area[10010];
int n,m;
bool check(double mid){ 
    int sum = 0;
    for(int i=0;i<n;i++)        //把每个圆蛋糕都按大小mid分开。统计总数
        sum += (int)(area[i] / mid);
    if(sum >= m) return true;   //最后看总数够不够m个
    else         return false;
}
int main(){
    int T; scanf("%d",&T);
    while(T--){
        scanf("%d%d",&n,&m); m++;
        double maxx = 0;
        for(int i=0;i<n;i++){
            int r; scanf("%d",&r);
            area[i] = PI*r*r;
            if(maxx < area[i]) maxx = area[i]; //最大的一块蛋糕
        }
        double left = 0, right = maxx;  
        for(int i = 0; i<100; i++){  
      //while((right-left) > eps)   {      //for或者while都行
            double mid = left+(right-left)/2;
            if(check(mid))   left  = mid;   //每人能分到mid大小的蛋糕
            else             right = mid;   //不够分到mid大小的蛋糕
        }
        printf("%.4f\n",left);    // 打印right也对
    }
    return 0;
}

5. 二分法习题

  饥饿的奶牛  https://www.luogu.org/problem/P1868
  寻找段落   https://www.luogu.org/problem/P1419
  小车问题   https://www.luogu.org/problem/P1258
  借教室    https://www.luogu.org/problem/P1083
  跳石头    https://www.luogu.org/problem/P2678
  聪明的质监员 https://www.luogu.org/problem/P1314
  分梨子    https://www.luogu.org/problem/P1493
  第k大    http://acm.hdu.edu.cn/showproblem.php?pid=6231

6. 三分法求极值

6.1 原理

  三分法求单峰(或者单谷)的极值,是二分法的一个简单扩展。
  单峰函数和单谷函数如下图,函数f(x)在区间[l, r]内,只有一个极值v,在极值点两边,函数是单调变化的。以单峰函数为例,在v的左边,函数是严格单调递增的,在v右边是严格单调递减的。

算法竞赛专题解析(1):二分法、三分法_第2张图片
图6.1  (1)单峰函数       (2)单谷函数

  下面的讲解都以求单峰极值为例。
  如何求单峰函数最大值的近似值?虽然不能直接用二分法,不过,只要稍微变形一下,就能用了。
  在[l, r]上任取2个点,mid1和mid2,把函数分成三段。有以下情况:
  (1)若f(mid1) < f(mid2),极值点v一定在mid1的右侧。此时,mid1和mid2要么都在v的左侧,要么分别在v的两侧。如下图所示。

算法竞赛专题解析(1):二分法、三分法_第3张图片
图6.2 情况(1):极值点v在mid1右侧

  下一步,令l = mid1,区间从[l, r]缩小为[mid1, r],然后再继续把它分成三段。
  (2)同理,若f(mid1) > f(mid2),极值点v一定在mid2的左侧。如下图所示。下一步,令 r = mid2,区间从[l, r]缩小为[l, mid2]。

算法竞赛专题解析(1):二分法、三分法_第4张图片
图6.3 情况(2):极值点v在mid1右侧

  不断缩小区间,就能使得区间[l, r]不断逼近v,从而得到近似值。
  如何取mid1和mid2?有2种基本方法:
  (1)三等分:mid1和mid2为[l, r]的三等分点。那么区间每次可以减少三分之一。
  (2)近似三等分:计算[l, r]中间点mid = (l + r) / 2,然让mid1和mid2非常接近mid,例如mid1 = mid - eps,mid2 = mid + eps,其中eps是一个很小的值。那么区间每次可以减少接近一半。
  方法(2)比方法(1)要稍微快一点。
  (有网友说不要用方法(2):“因为在有些情况下这个 eps 过小可能导致这两个算出来的相等,如果相等就有可能会判断错方向,所以其实不建议这么写,log3 和 log2 本质上是一样的。”)
  注意:单峰函数的左右两边要严格单调,否则,可能在一边有f(mid1) == f(mid2),导致无法判断如何缩小区间。

6.2 实数三分

  下面用一个模板题给出实数三分的两种实现方法。
  ∎题目描述
  “模板三分法”,来源:https://www.luogu.com.cn/problem/P3382
  给出一个N次函数,保证在范围[l, r]内存在一点x,使得[l, x]上单调增,[x, r]上单调减。试求出x的值。
  ∎题解
  下面分别用前面提到的2种方法实现:(1)三等分;(2)近似三等分。
  (1)三等分

mid1和mid2为[l, r]的三等分点
#include
using namespace std;
const double eps = 1e-6;
int n;
double a[15];
double f(double x){       //计算函数值
    double s=0;
    for(int i=n;i>=0;i--) //注意函数求值的写法
        s = s*x + a[i];
    return s;
}
int main(){
    double L,R;
    scanf("%d%lf%lf",&n,&L,&R);
    for(int i=n;i>=0;i--) scanf("%lf",&a[i]);
    while(R-L > eps){  // for(int i = 0; i<100; i++){   //用for也行
        double k =(R-L)/3.0;
        double mid1 = L+k, mid2 = R-k;
        if(f(mid1) > f(mid2)) 
               R = mid2;
        else   L = mid1;
    }
    printf("%.5f\n",L);
    return 0;
}

  (2)近似三等分

mid1和mid2在[l, r]的中间点附近
#include
using namespace std;
const double eps = 1e-6;
int n; double a[15];
double f(double x){
    double s=0;
    for(int i=n;i>=0;i--) s=s*x+a[i];
    return s;
}
int main(){
    double L,R;
    scanf("%d%lf%lf",&n,&L,&R);
    for(int i=n;i>=0;i--) scanf("%lf",&a[i]);
    while(R-L > eps){   // for(int i = 0; i<100; i++){   //用for也行
        double mid = L+(R-L)/2; 
        if(f(mid - eps) > f(mid))
             R = mid;
        else L = mid;
     }
    printf("%.5f\n",L);
    return 0;
}

6.2.1 实数三分习题

  (1)“三分求极值”,题目来源:http://hihocoder.com/problemset/problem/1142
  ∎题目描述:在直角坐标系中有一条抛物线y = ax^2 + bx + c和一个点P(x, y),求点P到抛物线的最短距离d。
  ∎题解:直接求距离很麻烦。观察这一题的距离D,发现它满足单谷函数的特征,用三分法很合适。
  (2)三分套三分,是计算几何的常见题型。
  “Line belt”,题目来源:http://acm.hdu.edu.cn/showproblem.php?pid=3400
  ∎题目描述:给定两条线段AB、CD ,一个人在AB上跑的时候速度是p,在CD上速度是q,在其他地方跑速度是r。问从A点到D点最少的时间。
  ∎题解:从A出发,先走到AB上一点X,然后走到CD上一点Y,最后到D。时间是:
time = |AX|/p + |XY|/r + |YD|/q
  假设已经确定了X,那么目标就是在CD上找一点Y,使|XY|/r + |YD|/q最小,这是个单峰函数。三分套三分就可以了。

6.3 整数三分

  整数三分的形式是:

while (left < right) {
      int mid1 = left + (right - left)/3;
      int mid2 = right- (right - left)/3;
      if(check(mid1) > check(mid2))//移动right
      else//移动left
}

  下面是一个例题。
  ∎题目描述
  “期末考试”,题目来源:https://www.lydsy.com/JudgeOnline/problem.php?id=4868
  有n位同学,每位同学都参加了全部的m门课程的期末考试,都在焦急的等待成绩的公布。第i位同学希望在第ti天或之前得知所有课程的成绩。如果在第ti天,有至少一门课程的成绩没有公布,他就会等待最后公布成绩的课程公布成绩,每等待一天就会产生C不愉快度。对于第i门课程,按照原本的计划,会在第bi天公布成绩。有如下两种操作可以调整公布成绩的时间:1.将负责课程X的部分老师调整到课程Y,调整之后公布课程X成绩的时间推迟一天,公布课程Y成绩的时间提前一天;每次操作产生A不愉快度。2.增加一部分老师负责学科Z,这将导致学科Z的出成绩时间提前一天;每次操作产生B不愉快度。上面两种操作中的参数X,Y,Z均可任意指定,每种操作均可以执行多次,每次执行时都可以重新指定参数。现在希望你通过合理的操作,使得最后总的不愉快度之和最小,输出最小的不愉快度之和即可。
  ∎题解
  不愉快度是一个下凹的函数,用三分法。代码略。

你可能感兴趣的:(二分法)