- 【CV】25.1.7 arxiv更新速递
hinmer
arxivCV每日更新python人工智能计算机视觉chatgpt目标检测aiAIGC
—第1篇----关键词:手势识别,计算机视觉,低光照条件,机器学习,RaspberryPi,OpenCV论文链接-摘要:手势识别是一种基于计算机视觉技术的感知用户界面,允许计算机将人类动作解释为命令,使用户无需使用手与计算机交流,从而使鼠标和键盘变得多余。手势识别的主要弱点是光线条件,因为手势控制依赖于摄像头。摄像头用于在2D和3D中解释手势,因此提取的信息可能因光源而异。系统的限制是无法在黑暗环
- 【包邮送书】你好!Python
Mindtechnist
粉丝福利python网络开发语言机器学习
欢迎关注博主Mindtechnist或加入【智能科技社区】一起学习和分享Linux、C、C++、Python、Matlab,机器人运动控制、多机器人协作,智能优化算法,滤波估计、多传感器信息融合,机器学习,人工智能等相关领域的知识和技术。关注公粽号《机器和智能》回复关键词“python项目实战”即可获取美哆商城视频资源!博主介绍:CSDN博客专家,CSDN优质创作者,CSDN实力新星,CSDN内容
- 基于遗传算法的城市旅行问题(TSP)求解
NovakG_
深度学习python算法深度学习神经网络
1.遗传算法背景介绍遗传算法是一种基于生物进化论中的自然选择和遗传机制的优化算法,模拟了生物进化过程以搜索最优解。通过仿真染色体的交叉、变异等操作,遗传算法将求解过程转换为类似生物进化的迭代运算。该算法在解决复杂的组合优化问题时,通常比常规优化算法更高效,且具有广泛应用,包括组合优化、机器学习、信号处理、自适应控制和人工生命等领域2.遗传算法基本解题思路遗传算法的设计思路主要受到大自然中生物体进化
- 【2025 ODA teigha .NET系列开发教程 第五章】给CAD实体添加附属数据XDATA,包括源码
三好学生~张旺
ODATeigha.NET开发教程.net
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章Python机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档2025ODAteigha.NET系列开发教程系列文章目录AutoCADXData扩展数据开发指南什么是XData?XData的两种存储方式1.全局字典存储(XRecord)2.实体附加存储步骤1:注册应
- 【数据挖掘实战】 房价预测
机器学习司猫白
数据挖掘人工智能python机器学习
本次对kaggle中的入门级数据集,房价回归数据集进行数据挖掘,预测房屋价格。本人主页:机器学习司猫白机器学习专栏:机器学习实战PyTorch入门专栏:PyTorch入门深度学习实战:深度学习ok,话不多说,我们进入正题吧概述本次竞赛有79个解释变量(几乎)描述了爱荷华州艾姆斯住宅的各个方面,需要预测每套住宅的最终价格。数据集描述本次数据集已经上传,大家可以自行下载尝试文件说明train.csv-
- 【AI日志分析】基于机器学习的异常检测:告别传统规则的智能进阶
网罗开发
AI大模型人工智能机器学习
网罗开发(小红书、快手、视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:CO
- Copilot 概述
计算机萍萍学姐
copilotcopilot人工智能机器学习
Copilot是什么?它有什么用途?Copilot是由人工智能公司和GitHub合作开发的一个基于人工智能的代码提示工具,它可以利用机器学习技术和大量训练数据生成高质量的代码。Copilot的目标是在保持代码质量和可读性的前提下,提高开发者的编码效率,使得编码工作更为高效和便捷。Copilot的出现是解决编程过程中可能遇到的一些难点和瓶颈问题,特别是在快速迭代的敏捷开发场景中,提高编码效率和减少编
- 让旅游更智能:基于AR的旅游导览应用解析
Echo_Wish
Python笔记Python算法旅游arrestful
友友们好!我的新专栏《Python进阶》正式启动啦!这是一个专为那些渴望提升Python技能的朋友们量身打造的专栏,无论你是已经有一定基础的开发者,还是希望深入挖掘Python潜力的爱好者,这里都将是你不可错过的宝藏。在这个专栏中,你将会找到:●深入解析:每一篇文章都将深入剖析Python的高级概念和应用,包括但不限于数据分析、机器学习、Web开发等。●实战案例:通过丰富的实战案例,带你一步步实现
- 【AI日志分析】基于机器学习的异常检测:告别传统规则的智能进阶
人工智能机器学习深度学习
摘要随着系统规模的扩大和复杂性增加,传统基于规则的日志分析方法难以识别隐藏的复杂异常模式。本文将介绍基于机器学习的日志异常检测技术,包括模型选择、特征工程及实现步骤。通过具体的代码示例与图表,展示如何高效检测异常日志,并提供应用场景与优化策略。引言日志是系统运行状态的关键数据来源,但面对海量日志数据,传统规则式分析显得力不从心。机器学习能够根据日志的历史数据和行为模式,通过训练模型检测异常情况,不
- 【Python】已完美解决:ERROR: Could not find a version that satisfies the requirement re
屿小夏
python开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 下载马斯克Grok-1模型的实战代码
herosunly
大模型grok-1下载模型实战代码
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了下载马斯克Grok-1模型的实战代码,希望能对学习大模型的同学们有所帮助
- 吴恩达深度学习笔记(七)——机器学习策略
子非鱼icon
深度学习自学笔记深度学习机器学习人工智能神经网络吴恩达
一、正交化通俗的理解就是:要能够诊断出系统性能瓶颈在哪里,以有策略刚好解决这个问题。一个“按钮”只负责解决一件事情。二、单一数字评估指标准确率(precision):在分类器中标记为猫的例子中,有多少是真的猫召回率(recall):对于所有的真猫图片,你的分类器正确识别了多少。但如果有两个评估指标,就很难去选择一个更好的分类器,如下图所示。所以有一个结合这两个指标的标准方法,也即F1分数,定义如下
- 数据挖掘:定义、挑战与应用
黑色叉腰丶大魔王
数据挖掘人工智能
一、数据挖掘的定义(一)概念阐述数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。它融合了数据库技术、统计学、机器学习、人工智能等多学科的理论和方法,旨在通过对数据的深入分析和处理,发现有价值的模式、关联、趋势等,从而为决策提供支持。(二)与相关概念的区别与联系数据库管理:数据库管理侧重于数据的存储、组织、检索和维护
- 使用Google Vertex AI Search进行企业级高级搜索
hgSdaegva
人工智能python
技术背景介绍GoogleVertexAISearch(前称为EnterpriseSearchonGenerativeAIAppBuilder)是GoogleCloud提供的VertexAI机器学习平台的一部分。VertexAISearch允许组织快速建立由生成式AI驱动的搜索引擎,为客户和员工提供服务。它基于各种GoogleSearch技术,包括语义搜索,通过使用自然语言处理和机器学习技术来推断内
- 在EverlyAI上运行LLM模型——以LLAMA为例
HGWAcsdgvs
llamapython
在EverlyAI上运行LLM模型——以LLAMA为例技术背景介绍EverlyAI是一个强大的云平台,允许你在云中大规模运行机器学习模型。它还提供了对多种大型语言模型(LLM)的API访问。在这篇文章中,我们将展示如何使用EverlyAI的API来调用LLAMA模型。通过这种方式,你可以在云端轻松地运行和测试你的语言模型。核心原理解析LLAMA模型是一个强大的变压器模型,它具有数十亿个参数,能够处
- 自动化评估:利用机器学习算法评估
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1评估的意义评估在各个领域都扮演着至关重要的角色,例如教育、人力资源、医疗保健等。传统评估方式通常依赖人工,费时费力且容易受到主观因素的影响。随着机器学习技术的不断发展,自动化评估逐渐成为一种趋势,它能够提高评估效率、降低成本并减少人为偏差。1.2机器学习在评估中的优势机器学习算法能够从大量数据中学习规律,并根据这些规律对新的数据进行预测或分类。在评估领域,机器学习可以用于:自动评
- Level2逐笔成交逐笔委托毫秒记录:今日分享优质股票数据20250122
2401_89140926
python金融数据库大数据
逐笔委托逐笔成交下载链接:https://pan.baidu.com/s/1WP6eGLip3gAbt7yFKg4XqA?pwd=7qtx提取码:7qtxLevel2逐笔成交逐笔委托数据分享下载通过Level2逐笔成交和逐笔委托这种每一笔的毫秒级别的数据可以分析出很多有用的点,包括主力意图,虚假动作,让任何操作无所遁形。适合交易大师来分析主力规律,也适合人工智能领域的机器学习,数据量大且精准。以下
- 机器学习-分类算法评估标准
赛丽曼
机器学习机器学习分类人工智能
一.准确率accuracy将预测结果和测试集的目标值比较,计算预测正确的百分比准确率越高说明模型效果越好fromsklearnimportdatasetsfromsklearn.model_selectionimporttrain_test_splitfromsklearn.neighborsimportKNeighborsClassifier#加载鸢尾花数据X,y=datasets.load_i
- Jetbrains Ai Assistant插件越来越好用了
Ai 编码
Ai编码工具人工智能android
在IntelliJIDEA中,JetBrainsAI是JetBrains集成的人工智能功能,旨在提高开发效率,辅助开发者更智能地编写、优化和理解代码。JetBrainsAI作为IntelliJIDEA的一部分,通过自然语言处理和机器学习技术,提供了许多智能代码建议和自动化功能。点击这里:获取JetbrainsAiAssistant插件 以下是JetBrainsAI在IntelliJIDEA中的一
- 机器学习算法(八):基于BP神经网络的乳腺癌的分类预测
墨枣
机器学习算法神经网络分类人工智能
机器学习算法(八):基于BP神经网络的乳腺癌的分类预测本项目链接:https://www.heywhale.com/home/column/64141d6b1c8c8b518ba97dcc1.算法简介和应用1.1算法简介BP(BackPropagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经
- AI驱动电商搜索导购:技术创新与应用
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
文章标题《AI驱动电商搜索导购:技术创新与应用》关键词:人工智能,电商搜索导购,机器学习,深度学习,推荐系统,自然语言处理,个性化搜索,图像识别,应用案例,未来展望。摘要:本文旨在探讨人工智能(AI)在电商搜索导购领域的应用,分析其技术创新和实际应用案例,探讨AI驱动电商搜索导购的未来发展趋势。文章首先介绍了AI在电商搜索导购中的角色和优势,然后深入探讨了AI基础理论和搜索导购技术原理。接着,文章
- 【机器学习实战入门】使用OpenCV进行性别和年龄检测
精通代码大仙
数据挖掘深度学习python机器学习pythonopencv数据挖掘人工智能
GenderandAgeDetectionPython项目首先,向您介绍用于此高级Python项目的性别和年龄检测中的术语:什么是计算机视觉?计算机视觉是一门让计算机能够像人类一样观察和识别数字图像和视频的学科。它面临的挑战大多源于对生物视觉有限的了解。计算机视觉涉及获取、处理、分析和理解数字图像,旨在从现实世界中提取高维数据,从而生成可用来做决策的符号或数值信息。该过程通常包括物体识别、视频跟踪
- 机器学习笔记 - 机器学习/深度学习实战案例合集
坐望云起
深度学习从入门到精通机器学习深度学习人工智能案例应用神经网络
一、简述如何学习机器学习/深度学习,理论和实践都很重要,理论上的内容需要看课程、读教材。但是实践需要自己动手,实践之后自然会对理论有更深入的理解。怎么实践?借用欧阳修《卖油翁》的话”无他,但手熟尔“。就是多看多写多跑。下面创建这个github的目的是为了存放一些图像处理/计算机视觉/机器学习/深度学习的示例代码集合,不定期会添加新的示例,可供参考。GitHub-bashendixie/ml_too
- Java 大视界 -- Java 与大数据分布式机器学习平台搭建(58)
青云交
大数据新视界Java大视界大数据分布式机器学习ApacheSparkHadoopApacheFlink平台搭建架构设计
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。一、欢迎加入【福利社群
- AI 对程序员的冲击剖析
程序员WANG
工具人工智能机器学习语言模型
摘要随着人工智能(AI)技术的飞速发展,其影响力已逐渐渗透到各个行业,程序员群体也面临着前所未有的冲击。本文深入探讨AI对程序员在编程工作模式、技能需求以及职业发展路径等方面带来的冲击,并分析程序员应对这些冲击的策略与方向,旨在为程序员在AI时代的职业发展提供参考。一、引言AI技术近年来取得了突破性进展,其在自然语言处理、机器学习、深度学习等领域的应用日益广泛。在软件开发领域,AI不再仅仅是辅助工
- svm python 模型绘图_1SVM处理数据并绘图
张炜大师傅
svmpython模型绘图
爬虫Python基础、数据分析扩展包Numpy、pandas、matplotlib,Python读取MySQL数据,Python爬虫及Scrapy框架,无监督机器学习算法聚类分析等,以及案例:互联网金融行业客户价值分析等。机器学习机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有
- 机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
promptllm人工智能
基础算法常见面试篇1.1过拟合和欠拟合常见面试篇一、过拟合和欠拟合是什么?二、过拟合/高方差(overfiting/highvariance)篇2.1过拟合是什么及检验方法?2.2导致过拟合的原因是什么?2.3过拟合的解决方法是什么?三、欠拟合/高偏差(underfiting/highbias)篇3.1欠拟合是什么及检验方法?3.2导致欠拟合的原因是什么?3.3过拟合的解决方法是什么?1.2Bat
- 从System Prompt来看GPT-3.5到GPT-4的进化
herosunly
大模型systempromptgpt-3chatgptgpt4gpt4o
大家好,我是herosunly。985院校硕士毕业,现担任算法t研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了从SystemPrompt来看GPT-3.5到GPT-4的进化之路,希
- R语言机器学习算法实战系列(十九)特征选择之Monte Carlo算法(Monte Carlo Feature Selection)
生信学习者1
R语言机器学习实战r语言机器学习算法数据分析数据挖掘数据可视化人工智能
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!文章目录介绍原理步骤下载数据加载R包导入数据数据预处理数据分割MCFS运行MCFS-ID过程混淆矩阵重要特征的RI最小阈值距离与共同部分收敛特征重要性排序选择重要特征构建特征依赖图提取重要特征基于重要特征构建随机森林模型混淆矩阵评估模型AUC曲线刻画模型在训练和测试数据集的表现总结系统信息介绍特征选择(FeatureSel
- F#语言的图形用户界面
沈霁晨
包罗万象golang开发语言后端
F#语言的图形用户界面开发引言随着软件开发的日益复杂化,图形用户界面(GUI)在现代应用程序中的重要性不可忽视。它提供了一种直观的方式,使用户能够与应用程序进行交互。F#语言作为一种函数式编程语言,近年来在开发领域越来越受到关注,尤其是在数据分析和机器学习领域。但F#同样能够用于图形用户界面的开发,尤其是结合.NET平台及其丰富的库。本文将深入探讨F#语言在图形用户界面开发中的应用,包括常用的框架
- SAX解析xml文件
小猪猪08
xml
1.创建SAXParserFactory实例
2.通过SAXParserFactory对象获取SAXParser实例
3.创建一个类SAXParserHander继续DefaultHandler,并且实例化这个类
4.SAXParser实例的parse来获取文件
public static void main(String[] args) {
//
- 为什么mysql里的ibdata1文件不断的增长?
brotherlamp
linuxlinux运维linux资料linux视频linux运维自学
我们在 Percona 支持栏目经常收到关于 MySQL 的 ibdata1 文件的这个问题。
当监控服务器发送一个关于 MySQL 服务器存储的报警时,恐慌就开始了 —— 就是说磁盘快要满了。
一番调查后你意识到大多数地盘空间被 InnoDB 的共享表空间 ibdata1 使用。而你已经启用了 innodbfileper_table,所以问题是:
ibdata1存了什么?
当你启用了 i
- Quartz-quartz.properties配置
eksliang
quartz
其实Quartz JAR文件的org.quartz包下就包含了一个quartz.properties属性配置文件并提供了默认设置。如果需要调整默认配置,可以在类路径下建立一个新的quartz.properties,它将自动被Quartz加载并覆盖默认的设置。
下面是这些默认值的解释
#-----集群的配置
org.quartz.scheduler.instanceName =
- informatica session的使用
18289753290
workflowsessionlogInformatica
如果希望workflow存储最近20次的log,在session里的Config Object设置,log options做配置,save session log :sessions run ;savesessio log for these runs:20
session下面的source 里面有个tracing 
- Scrapy抓取网页时出现CRC check failed 0x471e6e9a != 0x7c07b839L的错误
酷的飞上天空
scrapy
Scrapy版本0.14.4
出现问题现象:
ERROR: Error downloading <GET http://xxxxx CRC check failed
解决方法
1.设置网络请求时的header中的属性'Accept-Encoding': '*;q=0'
明确表示不支持任何形式的压缩格式,避免程序的解压
- java Swing小集锦
永夜-极光
java swing
1.关闭窗体弹出确认对话框
1.1 this.setDefaultCloseOperation (JFrame.DO_NOTHING_ON_CLOSE);
1.2
this.addWindowListener (
new WindowAdapter () {
public void windo
- 强制删除.svn文件夹
随便小屋
java
在windows上,从别处复制的项目中可能带有.svn文件夹,手动删除太麻烦,并且每个文件夹下都有。所以写了个程序进行删除。因为.svn文件夹在windows上是只读的,所以用File中的delete()和deleteOnExist()方法都不能将其删除,所以只能采用windows命令方式进行删除
- GET和POST有什么区别?及为什么网上的多数答案都是错的。
aijuans
get post
如果有人问你,GET和POST,有什么区别?你会如何回答? 我的经历
前几天有人问我这个问题。我说GET是用于获取数据的,POST,一般用于将数据发给服务器之用。
这个答案好像并不是他想要的。于是他继续追问有没有别的区别?我说这就是个名字而已,如果服务器支持,他完全可以把G
- 谈谈新浪微博背后的那些算法
aoyouzi
谈谈新浪微博背后的那些算法
本文对微博中常见的问题的对应算法进行了简单的介绍,在实际应用中的算法比介绍的要复杂的多。当然,本文覆盖的主题并不全,比如好友推荐、热点跟踪等就没有涉及到。但古人云“窥一斑而见全豹”,希望本文的介绍能帮助大家更好的理解微博这样的社交网络应用。
微博是一个很多人都在用的社交应用。天天刷微博的人每天都会进行着这样几个操作:原创、转发、回复、阅读、关注、@等。其中,前四个是针对短博文,最后的关注和@则针
- Connection reset 连接被重置的解决方法
百合不是茶
java字符流连接被重置
流是java的核心部分,,昨天在做android服务器连接服务器的时候出了问题,就将代码放到java中执行,结果还是一样连接被重置
被重置的代码如下;
客户端代码;
package 通信软件服务器;
import java.io.BufferedWriter;
import java.io.OutputStream;
import java.io.O
- web.xml配置详解之filter
bijian1013
javaweb.xmlfilter
一.定义
<filter>
<filter-name>encodingfilter</filter-name>
<filter-class>com.my.app.EncodingFilter</filter-class>
<init-param>
<param-name>encoding<
- Heritrix
Bill_chen
多线程xml算法制造配置管理
作为纯Java语言开发的、功能强大的网络爬虫Heritrix,其功能极其强大,且扩展性良好,深受热爱搜索技术的盆友们的喜爱,但它配置较为复杂,且源码不好理解,最近又使劲看了下,结合自己的学习和理解,跟大家分享Heritrix的点点滴滴。
Heritrix的下载(http://sourceforge.net/projects/archive-crawler/)安装、配置,就不罗嗦了,可以自己找找资
- 【Zookeeper】FAQ
bit1129
zookeeper
1.脱离IDE,运行简单的Java客户端程序
#ZkClient是简单的Zookeeper~$ java -cp "./:zookeeper-3.4.6.jar:./lib/*" ZKClient
1. Zookeeper是的Watcher回调是同步操作,需要添加异步处理的代码
2. 如果Zookeeper集群跨越多个机房,那么Leader/
- The user specified as a definer ('aaa'@'localhost') does not exist
白糖_
localhost
今天遇到一个客户BUG,当前的jdbc连接用户是root,然后部分删除操作都会报下面这个错误:The user specified as a definer ('aaa'@'localhost') does not exist
最后找原因发现删除操作做了触发器,而触发器里面有这样一句
/*!50017 DEFINER = ''aaa@'localhost' */
原来最初
- javascript中showModelDialog刷新父页面
bozch
JavaScript刷新父页面showModalDialog
在页面中使用showModalDialog打开模式子页面窗口的时候,如果想在子页面中操作父页面中的某个节点,可以通过如下的进行:
window.showModalDialog('url',self,‘status...’); // 首先中间参数使用self
在子页面使用w
- 编程之美-买书折扣
bylijinnan
编程之美
import java.util.Arrays;
public class BookDiscount {
/**编程之美 买书折扣
书上的贪心算法的分析很有意思,我看了半天看不懂,结果作者说,贪心算法在这个问题上是不适用的。。
下面用动态规划实现。
哈利波特这本书一共有五卷,每卷都是8欧元,如果读者一次购买不同的两卷可扣除5%的折扣,三卷10%,四卷20%,五卷
- 关于struts2.3.4项目跨站执行脚本以及远程执行漏洞修复概要
chenbowen00
strutsWEB安全
因为近期负责的几个银行系统软件,需要交付客户,因此客户专门请了安全公司对系统进行了安全评测,结果发现了诸如跨站执行脚本,远程执行漏洞以及弱口令等问题。
下面记录下本次解决的过程以便后续
1、首先从最简单的开始处理,服务器的弱口令问题,首先根据安全工具提供的测试描述中发现应用服务器中存在一个匿名用户,默认是不需要密码的,经过分析发现服务器使用了FTP协议,
而使用ftp协议默认会产生一个匿名用
- [电力与暖气]煤炭燃烧与电力加温
comsci
在宇宙中,用贝塔射线观测地球某个部分,看上去,好像一个个马蜂窝,又像珊瑚礁一样,原来是某个国家的采煤区.....
不过,这个采煤区的煤炭看来是要用完了.....那么依赖将起燃烧并取暖的城市,在极度严寒的季节中...该怎么办呢?
&nbs
- oracle O7_DICTIONARY_ACCESSIBILITY参数
daizj
oracle
O7_DICTIONARY_ACCESSIBILITY参数控制对数据字典的访问.设置为true,如果用户被授予了如select any table等any table权限,用户即使不是dba或sysdba用户也可以访问数据字典.在9i及以上版本默认为false,8i及以前版本默认为true.如果设置为true就可能会带来安全上的一些问题.这也就为什么O7_DICTIONARY_ACCESSIBIL
- 比较全面的MySQL优化参考
dengkane
mysql
本文整理了一些MySQL的通用优化方法,做个简单的总结分享,旨在帮助那些没有专职MySQL DBA的企业做好基本的优化工作,至于具体的SQL优化,大部分通过加适当的索引即可达到效果,更复杂的就需要具体分析了,可以参考本站的一些优化案例或者联系我,下方有我的联系方式。这是上篇。
1、硬件层相关优化
1.1、CPU相关
在服务器的BIOS设置中,可
- C语言homework2,有一个逆序打印数字的小算法
dcj3sjt126com
c
#h1#
0、完成课堂例子
1、将一个四位数逆序打印
1234 ==> 4321
实现方法一:
# include <stdio.h>
int main(void)
{
int i = 1234;
int one = i%10;
int two = i / 10 % 10;
int three = i / 100 % 10;
- apacheBench对网站进行压力测试
dcj3sjt126com
apachebench
ab 的全称是 ApacheBench , 是 Apache 附带的一个小工具 , 专门用于 HTTP Server 的 benchmark testing , 可以同时模拟多个并发请求。前段时间看到公司的开发人员也在用它作一些测试,看起来也不错,很简单,也很容易使用,所以今天花一点时间看了一下。
通过下面的一个简单的例子和注释,相信大家可以更容易理解这个工具的使用。
- 2种办法让HashMap线程安全
flyfoxs
javajdkjni
多线程之--2种办法让HashMap线程安全
多线程之--synchronized 和reentrantlock的优缺点
多线程之--2种JAVA乐观锁的比较( NonfairSync VS. FairSync)
HashMap不是线程安全的,往往在写程序时需要通过一些方法来回避.其实JDK原生的提供了2种方法让HashMap支持线程安全.
- Spring Security(04)——认证简介
234390216
Spring Security认证过程
认证简介
目录
1.1 认证过程
1.2 Web应用的认证过程
1.2.1 ExceptionTranslationFilter
1.2.2 在request之间共享SecurityContext
1
- Java 位运算
Javahuhui
java位运算
// 左移( << ) 低位补0
// 0000 0000 0000 0000 0000 0000 0000 0110 然后左移2位后,低位补0:
// 0000 0000 0000 0000 0000 0000 0001 1000
System.out.println(6 << 2);// 运行结果是24
// 右移( >> ) 高位补"
- mysql免安装版配置
ldzyz007
mysql
1、my-small.ini是为了小型数据库而设计的。不应该把这个模型用于含有一些常用项目的数据库。
2、my-medium.ini是为中等规模的数据库而设计的。如果你正在企业中使用RHEL,可能会比这个操作系统的最小RAM需求(256MB)明显多得多的物理内存。由此可见,如果有那么多RAM内存可以使用,自然可以在同一台机器上运行其它服务。
3、my-large.ini是为专用于一个SQL数据
- MFC和ado数据库使用时遇到的问题
你不认识的休道人
sqlC++mfc
===================================================================
第一个
===================================================================
try{
CString sql;
sql.Format("select * from p
- 表单重复提交Double Submits
rensanning
double
可能发生的场景:
*多次点击提交按钮
*刷新页面
*点击浏览器回退按钮
*直接访问收藏夹中的地址
*重复发送HTTP请求(Ajax)
(1)点击按钮后disable该按钮一会儿,这样能避免急躁的用户频繁点击按钮。
这种方法确实有些粗暴,友好一点的可以把按钮的文字变一下做个提示,比如Bootstrap的做法:
http://getbootstrap.co
- Java String 十大常见问题
tomcat_oracle
java正则表达式
1.字符串比较,使用“==”还是equals()? "=="判断两个引用的是不是同一个内存地址(同一个物理对象)。 equals()判断两个字符串的值是否相等。 除非你想判断两个string引用是否同一个对象,否则应该总是使用equals()方法。 如果你了解字符串的驻留(String Interning)则会更好地理解这个问题。
- SpringMVC 登陆拦截器实现登陆控制
xp9802
springMVC
思路,先登陆后,将登陆信息存储在session中,然后通过拦截器,对系统中的页面和资源进行访问拦截,同时对于登陆本身相关的页面和资源不拦截。
实现方法:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23