[记录]相机预览YUV转Bitmap

使用Camera2采集相机预览数据,一般推荐格式为YUV,而目前主流的图像处理算法却只针对RGB的,所以一般需要先将YUV图片格式转为RGB,在Android中为Bitmap。
这里有两个方式,一种是先转为jpg,再通过jpg转为Bitmap:

        YuvImage yuvImage = new YuvImage(nv21, ImageFormat.NV21, stride, height,  null);
        ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream();
        yuvImage.compressToJpeg(new Rect(0, 0, stride, height), 100, byteArrayOutputStream);
        Bitmap previewBitmap = null;
        try {
        byte[] jpgBytes = byteArrayOutputStream.toByteArray();
        BitmapFactory.Options options = new BitmapFactory.Options();
        options.inSampleSize = ImageUtil.getSampleSize(mPreferSize, stride, height);
        // 原始预览数据生成的bitmap
        final Bitmap originalBitmap = BitmapFactory.decodeByteArray(jpgBytes, 0, jpgBytes.length, options);
        Matrix matrix = new Matrix();
        // 预览相对于原数据可能有旋转
        matrix.postRotate(90);
        // 和预览画面相同的bitmap
        previewBitmap = Bitmap.createBitmap(originalBitmap, 0, 0, originalBitmap.getWidth(), originalBitmap.getHeight(), matrix, false);
        originalBitmap.recycle();
        } catch (OutOfMemoryError e) {
        e.printStackTrace();
        }

这里有个缩小和旋转的过程,inSampleSize 为缩小倍数。

第二种方式是使用ScriptIntrinsicYuvToRGB和Allocation直接将YUV转为RGB:

package *****;

import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.Canvas;
import android.graphics.Matrix;
import android.renderscript.Allocation;
import android.renderscript.Element;
import android.renderscript.RenderScript;
import android.renderscript.ScriptIntrinsicYuvToRGB;
import android.renderscript.Type;

public class YuvToRgb {
    private boolean mIsnitial= false;
    private RenderScript renderScript;
    private ScriptIntrinsicYuvToRGB scriptIntrinsicYuvToRGB;
    private Type.Builder yuvType, rgbaType;
    private Allocation in, out;
    private int mWidth, mHeight;

    private YuvToRgb() {}
    private static class HOLDER {
        private static YuvToRgb INSTANCE = new YuvToRgb();
    }

    public static YuvToRgb getInstance() {
        return HOLDER.INSTANCE;
    }

    Bitmap convertYUVtoRGB(Context context, byte[] yuvData, int width, int height, int inSampleSize, int rotation) {
        if(width <= 0 || height <= 0) {
            return null;
        }
        init(context);
        if(mWidth != width || mHeight != height) {
            yuvType = new Type.Builder(renderScript, Element.U8(renderScript)).setX(yuvData.length);
            in = Allocation.createTyped(renderScript, yuvType.create(), Allocation.USAGE_SCRIPT);

            rgbaType = new Type.Builder(renderScript, Element.RGBA_8888(renderScript)).setX(width).setY(height);
            out = Allocation.createTyped(renderScript, rgbaType.create(), Allocation.USAGE_SCRIPT);
            mWidth = width;
            mHeight = height;
        }
        in.copyFrom(yuvData);
        scriptIntrinsicYuvToRGB.setInput(in);
        scriptIntrinsicYuvToRGB.forEach(out);
        Bitmap outBmp = Bitmap.createBitmap(width, height, Bitmap.Config.ARGB_8888);
        out.copyTo(outBmp);

        // 这里的空白bitmap尺寸需要与变换后的预期尺寸一致
        int dstWidth = height/inSampleSize;
        int dstHeight = width/inSampleSize;
        Bitmap src = Bitmap.createBitmap(dstWidth, dstHeight, Bitmap.Config.ARGB_8888);
        final Canvas canvas = new Canvas(src);
        // 预览相对于原数据可能有旋转
        Matrix matrix = getTransformationMatrix(width, height, dstWidth, dstHeight, rotation, false, false, true);
        canvas.drawBitmap(outBmp, matrix, null);
        return src;
    }

    private void init(Context context) {
        if(!mIsnitial) {
            renderScript = RenderScript.create(context);
            scriptIntrinsicYuvToRGB = ScriptIntrinsicYuvToRGB.create(renderScript, Element.U8_4(renderScript));
            mWidth = 0;
            mHeight = 0;
            mIsnitial = true;
        }
    }

    /**
     * Returns a transformation matrix from one reference frame into another.
     * Handles cropping (if maintaining aspect ratio is desired) and rotation.
     *
     * @param srcWidth            Width of source frame.
     * @param srcHeight           Height of source frame.
     * @param dstWidth            Width of destination frame.
     * @param dstHeight           Height of destination frame.
     * @param applyRotation       Amount of rotation to apply from one frame to another.
     *                            Must be a multiple of 90.
     * @param flipHorizontal      should flip horizontally
     * @param flipVertical        should flip vertically
     * @param maintainAspectRatio If true, will ensure that scaling in x and y remains constant,
     *                            cropping the image if necessary.
     * @return The transformation fulfilling the desired requirements.
     */
    private static Matrix getTransformationMatrix(
            final int srcWidth,
            final int srcHeight,
            final int dstWidth,
            final int dstHeight,
            final int applyRotation, boolean flipHorizontal, boolean flipVertical,
            final boolean maintainAspectRatio) {
        final Matrix matrix = new Matrix();

        if (applyRotation != 0) {
            if (applyRotation % 90 != 0) {
                throw new IllegalArgumentException(String.format("Rotation of %d % 90 != 0", applyRotation));
            }

            // Translate so center of image is at origin.
            matrix.postTranslate(-srcWidth / 2.0f, -srcHeight / 2.0f);

            // Rotate around origin.
            matrix.postRotate(applyRotation);
        }

        // Account for the already applied rotation, if any, and then determine how
        // much scaling is needed for each axis.
        final boolean transpose = (Math.abs(applyRotation) + 90) % 180 == 0;

        final int inWidth = transpose ? srcHeight : srcWidth;
        final int inHeight = transpose ? srcWidth : srcHeight;

        int flipHorizontalFactor = flipHorizontal ? -1 : 1;
        int flipVerticalFactor = flipVertical ? -1 : 1;

        // Apply scaling if necessary.
        if (inWidth != dstWidth || inHeight != dstHeight) {
            final float scaleFactorX = flipHorizontalFactor * dstWidth / (float) inWidth;
            final float scaleFactorY = flipVerticalFactor * dstHeight / (float) inHeight;

            if (maintainAspectRatio) {
                // Scale by minimum factor so that dst is filled completely while
                // maintaining the aspect ratio. Some image may fall off the edge.
                final float scaleFactor = Math.max(Math.abs(scaleFactorX), Math.abs(scaleFactorY));
                matrix.postScale(scaleFactor, scaleFactor);
            } else {
                // Scale exactly to fill dst from src.
                matrix.postScale(scaleFactorX, scaleFactorY);
            }
        }

        if (applyRotation != 0) {
            // Translate back from origin centered reference to destination frame.
            float dx = dstWidth / 2.0f;
            float dy = dstHeight / 2.0f;
            matrix.postTranslate(dx, dy);
            // postScale中心点如果出错,图像不会被变换
            matrix.postScale(flipHorizontalFactor, flipVerticalFactor, dx, dy);
        }

        return matrix;
    }
}

调用方式:

Bitmap previewBitmap = YuvToRgb.getInstance().convertYUVtoRGB(getActivity(), nv21, stride, height,
                    ImageUtil.getSampleSize(mPreferSize, stride, height), 90);

按理说,第二种方法少了一个转为jpg的过程,速度应该更快才对,实测却发现,第二种方式比第一种还慢一半,原因是,第一种方法中第一个bitmap就已经进行缩小,导致时间更少。
怎么说了,为啥还要研究第二种方法呢,因为这个过程要频繁调用,第一种方法存在一定的内存抖动。至于如何取舍优化,目前还没想好。

你可能感兴趣的:(Android)