异步电机磁链环PI参数设计

前置阅读

PI参数设计
异步电机数学模型

异步电机磁链环传递函数

G ( s ) = ( K p + K i s ) L m s τ r + 1 G ( j 2 π f c u t ) = ( K p + K i j 2 π f c u t ) L m j 2 π f c u t τ r + 1 \begin{array}{l} G(s) = {\rm{(}}Kp + \frac{{Ki}}{s}{\rm{)}}\frac{{{L_m}}}{{s{\tau _{\rm{r}}} + 1}}\\ G(j2\pi {f_{{\rm{cut}}}}) = {\rm{(}}Kp + \frac{{Ki}}{{j2\pi {f_{{\rm{cut}}}}}}{\rm{)}}\frac{{{L_m}}}{{j2\pi {f_{{\rm{cut}}}}{\tau _{\rm{r}}} + 1}} \end{array} G(s)=(Kp+sKi)sτr+1LmG(j2πfcut)=(Kp+j2πfcutKi)j2πfcutτr+1Lm

根据相位裕度需求计算截止频率

∠ G ( j ω ) = − 8.88 − ( a r c tan ⁡ ( 2 π f c u t τ r ) ) P M S e t = 180 + ( − 8.88 − ( a r c tan ⁡ ( 2 π f c u t τ r ) ) ) f c u t = tan ⁡ ( 171 . 12 − P M S e t ) 2 π τ r \begin{array}{l} \angle G(j\omega ) = - 8.88 - {\rm{(}}arc\tan (2\pi {f_{{\rm{cut}}}}{\tau _{\rm{r}}}{\rm{))}}\\ PM{}_{Set} = 180 + ( - 8.88 - {\rm{(}}arc\tan (2\pi {f_{{\rm{cut}}}}{\tau _{\rm{r}}}{\rm{))}})\\ {f_{{\rm{cut}}}} = \frac{{\tan ({\rm{171}}{\rm{.12}} - PM{}_{Set})}}{{2\pi {\tau _{\rm{r}}}}} \end{array} G(jω)=8.88(arctan(2πfcutτr))PMSet=180+(8.88(arctan(2πfcutτr)))fcut=2πτrtan(171.12PMSet)

PI参数计算
∣ G ( j 2 π f c u t ) ∣ = ∣ ( K p + K i j 2 π f c u t ) L m j 2 π f c u t τ r + 1 ∣ = ∣ ( K p + K i j 2 π f c u t ) L m ( j 2 π f c u t τ r − 1 ) ( j 2 π f c u t τ r + 1 ) ( j 2 π f c u t τ r − 1 ) ∣ = L m ( 2 π f c u t τ r ) 2 − 1 ∣ j ( K p 2 π f c u t τ r + K i 2 π f c u t ) + ( K i τ r − K p ) ∣ = L m K p ( 2 π f c u t τ r ) 2 − 1 ∣ j ( 2 π f c u t τ r + 1 6.4 ) + ( 2 π f c u t 6.4 τ r − 1 ) ∣ = L m K p ( 2 π f c u t τ r ) 2 − 1 ( 2 π f c u t τ r + 1 6.4 ) 2 + ( 2 π f c u t 6.4 τ r − 1 ) 2 = 1 K p = ( 2 π f c u t τ r ) 2 − 1 ( 2 π f c u t τ r + 1 6.4 ) 2 + ( 2 π f c u t 6.4 τ r − 1 ) 2 K i = 2 π f c u t 6.4 K p \begin{array}{l} {\rm{|}}G(j2\pi {f_{{\rm{cut}}}}){\rm{| = }}|{\rm{(}}Kp + \frac{{Ki}}{{j2\pi {f_{{\rm{cut}}}}}}{\rm{)}}\frac{{{L_m}}}{{j2\pi {f_{{\rm{cut}}}}{\tau _{\rm{r}}}{\rm{ + }}1}}| = |{\rm{(}}Kp + \frac{{Ki}}{{j2\pi {f_{{\rm{cut}}}}}}{\rm{)}}\frac{{{L_m}{\rm{(}}j2\pi {f_{{\rm{cut}}}}{\tau _{\rm{r}}} - 1{\rm{)}}}}{{(j2\pi {f_{{\rm{cut}}}}{\tau _{\rm{r}}}{\rm{ + }}1){\rm{(}}j2\pi {f_{{\rm{cut}}}}{\tau _{\rm{r}}} - 1{\rm{)}}}}|\\ = \frac{{{L_m}}}{{{{(2\pi {f_{{\rm{cut}}}}{\tau _{\rm{r}}})}^2} - 1}}|j(Kp2\pi {f_{{\rm{cut}}}}{\tau _{\rm{r}}} + \frac{{Ki}}{{2\pi {f_{{\rm{cut}}}}}}) + (Ki{\tau _{\rm{r}}} - Kp)|\\ = \frac{{{L_m}Kp}}{{{{(2\pi {f_{{\rm{cut}}}}{\tau _{\rm{r}}})}^2} - 1}}|j(2\pi {f_{{\rm{cut}}}}{\tau _{\rm{r}}} + \frac{1}{{6.4}}) + (2\pi \frac{{{f_{{\rm{cut}}}}}}{{6.4}}{\tau _{\rm{r}}} - 1)|\\ {\rm{ = }}\frac{{{L_m}Kp}}{{{{(2\pi {f_{{\rm{cut}}}}{\tau _{\rm{r}}})}^2} - 1}}\sqrt {{{(2\pi {f_{{\rm{cut}}}}{\tau _{\rm{r}}} + \frac{1}{{6.4}})}^2} + {{(2\pi \frac{{{f_{{\rm{cut}}}}}}{{6.4}}{\tau _{\rm{r}}} - 1)}^2}} = 1\\ Kp = \frac{{{{(2\pi {f_{{\rm{cut}}}}{\tau _{\rm{r}}})}^2} - 1}}{{\sqrt {{{(2\pi {f_{{\rm{cut}}}}{\tau _{\rm{r}}} + \frac{1}{{6.4}})}^2} + {{(2\pi \frac{{{f_{{\rm{cut}}}}}}{{6.4}}{\tau _{\rm{r}}} - 1)}^2}} }}\\ Ki = 2\pi \frac{{{f_{{\rm{cut}}}}}}{{6.4}}Kp \end{array} G(j2πfcut)=(Kp+j2πfcutKi)j2πfcutτr+1Lm=(Kp+j2πfcutKi)(j2πfcutτr+1)(j2πfcutτr1)Lm(j2πfcutτr1)=(2πfcutτr)21Lmj(Kp2πfcutτr+2πfcutKi)+(KiτrKp)=(2πfcutτr)21LmKpj(2πfcutτr+6.41)+(2π6.4fcutτr1)=(2πfcutτr)21LmKp(2πfcutτr+6.41)2+(2π6.4fcutτr1)2 =1Kp=(2πfcutτr+6.41)2+(2π6.4fcutτr1)2 (2πfcutτr)21Ki=2π6.4fcutKp

小结

  • 根据相位裕度需求, 能够求出磁链环的截止频率
  • 然后,只需要代入电机转子时间常数与截止频率, 则可求出PI参数

你可能感兴趣的:(电机控制,算法)