- Redisson 分布式锁全面解析:锁类型(可重入锁、公平锁、联锁、红锁、读写锁)和锁常见方法解读
千层冷面
Redis分布式
Redisson分布式锁全面解析一、Redisson分布式锁原理Redisson分布式锁基于Redis实现,核心机制如下:Lua脚本保证原子性使用Lua脚本在Redis中执行锁的获取和释放操作,确保多个Redis命令的原子性。可重入锁设计同一线程可重复获取锁,通过计数器记录重入次数,避免死锁。看门狗(Watchdog)自动续期后台线程定期检查锁状态,若锁仍被持有且未完成业务逻辑,则自动延长锁的过期
- C语言数据结构——变长数组(柔性数组)
Iawfy22
数据结构c语言柔性数组
前言这是一位即将大二的大学生(卷狗)在暑假预习数据结构时的一些学习笔记,供大家参考学习。水平有限,如有错误,还望多多指正。本文主要介绍了如何手动实现一个变长数组,以及实现其部分功能(如删除、查找、添加、排序等)变长数组介绍变长数组又可以叫柔性数组,与一般数组不同,它是一个动态的数组,具体表现为可以根据数组里面元素个数的多少而自动的进行扩容,以便达到变长(柔性)的特点。预备知识为了实现自动边长扩容这
- pytorch实现cifar10多分类总结
L_pyu
人工智能pytorch分类
cifar-10简介:CIFAR-10是一个常用的图像分类数据集,每张图片都是3×32×32,3通道彩色图片,分辨率32×32。它包含了10个不同类别,每个类别有6000张图像,其中5000张用于训练,1000张用于测试。这10个类别分别为:飞机、汽车、鸟类、猫、鹿、狗、青蛙、马、船和卡车。CIFAR-10分类任务是将这些图像正确地分类到它们所属的类别中。对于这个任务,可以使用深度学习模型,如卷积
- 基于分组 NMS 的检测模型后处理改进
Lunar*
目标检测算法与优化目标检测深度学习python
引言在目标检测任务中,后处理阶段的非极大值抑制(Non-MaximumSuppression,NMS)是至关重要的一环,主要用于去除高度重叠的冗余预测框。然而,在某些场景中,不同类别的目标可能会被网络同时预测为多个相近的类别,例如:交通工具检测场景:同一辆车可能被误检测为“自行车”和“电动车”。动物检测场景:同一只动物可能被误检测为“狼”和“狗”。家电检测场景:同一台设备可能被误检测为“微波炉”和
- AI工具使用手册:笑着学会让DeepSeek叫你主人
skyksksksksks
AI个人杂记人工智能深度学习神经网络自然语言处理机器学习
【别慌!你的智商还没欠费】各位父老乡亲兄弟姐妹们,今天我们要研究的是这个号称"赛博菩萨"的DeepSeek。先说好了啊,这玩意儿绝对比你家二哈听话,比前男友靠谱,关键还不用买狗粮!下面这张表请含泪收藏:功能对比DeepSeek你家二哈前男友响应速度0.5秒拆家2小时起已读不回3天+知识储备全网数据只会要饭王者荣耀段位售后服务24小时在线随地大小便人间蒸发术使用成本网费电费狗粮+沙发钱青春损失费—我
- 【深度学习】从全连接层到卷积
熙曦Sakura
深度学习深度学习人工智能
从全连接层到卷积我们之前讨论的多层感知机十分适合处理表格数据,其中行对应样本,列对应特征。对于表格数据,我们寻找的模式可能涉及特征之间的交互,但是我们不能预先假设任何与特征交互相关的先验结构。此时,多层感知机可能是最好的选择,然而对于高维感知数据,这种缺少结构的网络可能会变得不实用。例如,在之前猫狗分类的例子中:假设我们有一个足够充分的照片数据集,数据集中是拥有标注的照片,每张照片具有百万级像素,
- 机器狗监控系统软件工程师面试题
道亦无名
机器人面试机器狗
大部分企业会使用的面试题一、基础知识编程语言方面请简述C++中多态的实现方式,在机器狗监控系统中,哪里可能会用到多态来提高代码的扩展性?例如不同型号机器狗的运动控制模块。Python作为脚本语言在系统开发中有诸多应用,说说Python的GIL(全局解释锁)对多线程性能的影响,以及在实时数据采集与处理场景下如何规避。数据结构与算法若要实现机器狗的路径规划,你会选择哪种数据结构来存储地图信息,比如栅格
- 计算机视觉深度学习入门(4)
yyc_audio
计算机视觉人工智能计算机视觉深度学习神经网络
在小型数据集上从头开始训练一个卷积神经网络利用少量数据来训练图像分类模型,这是一种很常见的情况。如果你从事与计算机视觉相关的职业,那么很可能会在实践中遇到这种情况。“少量”样本既可能是几百张图片,也可能是上万张图片。我们来看一个实例——猫狗图片分类,数据集包含5000张猫和狗的图片(2500张猫的图片,2500张狗的图片)。我们将2000张图片用于训练,1000张用于验证,2000张用于测试。将介
- 设计模式之简单工厂模式
Absinthe_苦艾酒
设计模式设计模式简单工厂模式java
首先我们来看看代码实现1.创建接口//动物接口interfaceAnimal{voidspeak();//每种动物都会叫}//猫类classCatimplementsAnimal{publicvoidspeak(){System.out.println("喵喵喵!");}}//狗类classDogimplementsAnimal{publicvoidspeak(){System.out.print
- python爬取房源数据_python爬取安居客二手房网站数据(转)
weixin_39897758
python爬取房源数据
之前没课的时候写过安居客的爬虫,但那也是小打小闹,那这次呢,还是小打小闹哈哈,现在开始正式进行爬虫书写首先,需要分析一下要爬取的网站的结构:作为一名河南的学生,那就看看郑州的二手房信息吧!在上面这个页面中,我们可以看到一条条的房源信息,从中我们发现了什么,发现了连郑州的二手房都是这么的贵,作为即将毕业的学生狗惹不起啊惹不起还是正文吧!!!由上可以看到网页一条条的房源信息,点击进去后就会发现:房源的
- 一款好用的工具,太流批了
luyun020202
windowsfigmajava
Win10以后的系统中,有一个听起来很厉害但似乎无人问津的功能—虚拟桌面。微软的初衷其实很好,允许我们将不同用途的应用程序分别放置在不同的桌面中,从而实现工作区的划分。然而,之前一直没用它的原因在于,尽管桌面被隔离了,但像微信这种常驻任务栏的应用,点击后还是会跳回原来的桌面。此外,它的快捷键(Ctrl+Win+←→)非常不方便,必须要用两只手才能按出。因此,给大家推荐一款轻量到极致的虚拟桌面软件—
- 使用Java进行加密狗相关程序优化
加密狗定制分析赋值
运维数据库服务器人工智能pygame
个人心得1.加密狗通信优化-减少不必要的交互-分析加密狗操作流程,去除冗余的读取或写入操作。例如,如果在初始化阶段已经获取了某些配置信息且在后续流程中不会改变,就不需要重复读取。-批量处理加密狗相关的操作。如果需要对加密狗进行多次数据写入或读取,尝试将这些操作合并为一次批量操作(如果加密狗驱动和API支持)。-优化通信协议-深入了解加密狗与Java程序之间的通信协议。如果协议允许,采用更高效的编码
- 扩散模型中三种加入条件的方式:Vanilla Guidance,Classifier Guidance 以及 Classifier-Free Guidance
AIGC_ZY
DiffusionModels机器学习计算机视觉深度学习
扩散模型主要包括两个过程:前向扩散过程和反向去噪过程。前向过程逐渐给数据添加噪声,直到数据变成纯噪声;反向过程则是学习如何从噪声中逐步恢复出原始数据。在生成过程中,模型从一个随机噪声开始,通过多次迭代去噪,最终生成有意义的数据,比如图像。这时候,如果需要生成特定类别的数据,比如生成猫的图像而不是狗的,就需要加入条件引导,控制生成的方向。这就是条件扩散模型的作用。VanillaGuidance、Cl
- 【PerfDog】性能测试工具【功能模块一览表】
行者无疆xcc
性能测试性能优化测试工具
PerfDog简要介绍官网是一款全平台性能测试工具性能狗一、常规测试无需修改硬件:例如设备ROOT/越狱等无需代码嵌入:可结合分析竞争对手表现极简化使用,在任意场景上测试开发和生成精准捕获系统级专业数据:如FPS、功耗\GPUCounter等二、深度分析相关文档:深度分析Android平台设置IOS平台设置CPU运行剖析,核心调度和线程状态等直观呈现各个线程函数耗时,分析卡顿瓶颈云端数据管理平台,
- 【西瓜书《机器学习》七八九章内容通俗理解】
游戏乐趣
人工智能机器学习人工智能
第七章:贝叶斯分类器7.1贝叶斯决策论基础核心概念:贝叶斯分类器是基于概率来做分类决策的。简单来说,就是根据已知的一些条件,去计算每个类别出现的概率,然后选择概率最大的那个类别作为分类结果。就好比你在猜一个盒子里装的是红球还是蓝球,你可以根据之前从这个盒子里摸球的一些经验(比如摸出红球的次数多),来判断这次盒子里更有可能是红球还是蓝球。例子:假如你要判断一幅图片是猫还是狗。你知道在所有的图片数据里
- 双指针技巧
阿图灵
算法
通俗解释双指针技巧是一种在数组、链表等线性数据结构中非常实用的算法策略。它通过使用两个指针在数据结构上按一定规则移动,来高效地解决各种问题。双指针技巧就像是我们在处理一排物品(比如数组、链表里的元素)时,同时用两只手去操作。每只手对应一个指针,它们可以在这排物品上按照一定规则移动,通过两只手的配合来高效地完成各种任务,比如找特定的元素组合、判断是否存在某种情况等。下面详细介绍三种常见的双指针类型。
- 搜广推校招面经二十八
Y1nhl
搜广推面经推荐算法求职招聘搜索引擎机器学习算法
蚂蚁推荐算法一、介绍损失函数、为什么分类和回归的损失函数不能共用损失函数的介绍见【搜广推校招面经十八】1.1.分类和回归损失函数不能共用的原因分类和回归任务的目标不同,因此它们的损失函数设计也存在本质区别:输出空间的不同回归任务:目标是预测一个连续值(如房价、温度等)。输出空间是连续的实数范围。分类任务:目标是预测离散的类别标签(如“猫”或“狗”)或者概率。输出空间通常是有限的类别集合。误差衡量方
- 基于tensorflow使用VGG16实现猫狗识别
Jakari
tensorflowpython
importtensorflowastfimportnumpyasnpfromtensorflow.kerasimportlayers,models,optimizersfromtensorflow.keras.preprocessing.imageimportImageDataGenerator#定义VGG16模型classVGG16(tf.keras.Model):def__init__(se
- go-redis实现分布式锁
kobayashiii
golangredis
go-redis实现分布式锁介绍默认阻塞在这种情况下只进行一次尝试获取锁,失败就停止了。自旋锁在这个模式下,会尝试获取锁,当失败后会尝试自旋不断的尝试,直到获取了锁。ticker表示每次自旋的时间间隔,CAStime表示总共的自旋时间,超出后停止自旋。在外部还有一个context用来控制整个goroutine运行时间看门狗策略原本我们设定了固定的redis锁时间,但有些任务时间长,有些任务时间短,
- Redis存储⑮Redis的应用_分布式锁_Lua脚本/Redlock算法
GR鲸鱼
Redis存储分布式redis缓存数据库
目录1.分布式锁的概念2.分布式锁的实现3.过期时间4.校验id5.Lua脚本6.watchdog(看门狗)7.Redlock算法8.其他功能1.分布式锁的概念在一个分布式的系统中,也会涉及到多个节点访问同一个公共资源的情况,此时就需要通过锁来做互斥控制,避免出现类似于“线程安全”的问题。而Java的synchronized或者C++的std::mutex,这样的锁都是只能在当前进程中生效,在分布
- 密码狗的使命
加密狗定制分析赋值
plotly人工智能scikit-learn密码学运维
密码狗:数字时代的忠诚卫士在数字时代的浪潮中,"密码狗"这个充满科技感的词汇悄然兴起。它不是一个简单的密码管理工具,而是数字时代忠诚卫士的象征。密码狗守护着我们的数字资产,捍卫着我们的隐私安全,在虚拟与现实的边界上筑起一道坚固的防线。一、密码狗的使命在数字世界中,密码是守护个人隐私的第一道防线。密码狗的出现,让这道防线变得更加坚固。它采用先进的加密算法,将复杂的密码存储在安全的硬件设备中,确保即使
- WatchDog 看门狗
不要成为根号三
Redisjavajvmredis后端中间件
Watchdog机制(看门狗机制)是分布式系统或多进程/多线程应用中常见的一种防止服务或进程失效的机制。它的核心思想是:定期监控程序的健康状态,并在程序挂掉或死锁时进行自动恢复。在分布式系统中,watchdog常常与分布式锁、健康检查、超时机制等结合使用,来确保系统在异常情况下能够及时发现问题并进行自我修复。工作原理定时检查:watchdog通常是一个独立的进程或线程,负责定时监控某个资源、进程或
- 基于YOLOv5的野生动物检测与监控系统:猫、狗、鸟、猴子、狮子、老虎、象的实时识别与分析
深度学习&目标检测实战项目
YOLO目标跟踪人工智能深度学习ui目标检测机器学习
1.引言随着人工智能技术的飞速发展,尤其是深度学习在计算机视觉领域的突破,目标检测技术已广泛应用于各类场景。从城市交通监控到安防系统,再到野生动物保护和生态监测,目标检测技术为我们提供了实时、精确的解决方案。在众多目标检测算法中,YOLO(YouOnlyLookOnce)系列因其高效性和实时性,已成为解决多类别目标检测任务的首选方法。本文将介绍如何使用YOLOv5进行野生动物检测与监控,包括猫、狗
- 【登月计划】DAY 4 中期 --《排产“阿尔法狗”大揭秘!美的如何用APS算法碾压对手》
泛泛不谈
0-2岁智能制造工程师启蒙制造经验分享需求分析
目录四、乐高教学:APS系统核心模块与排产算法1.APS系统定位与价值2.APS核心模块拆解模块1:产能建模引擎(排产的“地基”)模块2:排产算法库(排产的“大脑”)模块3:动态响应模块(排产的“应急部队”)3.家电行业典型排产规则规则1:交货期优先(DueDateFirst)规则2:最小化换型时间(SMED优化)规则3:瓶颈资源最大化利用4.APS系统数据流(家电行业协同网络)5.APS实施避坑
- yolo目标检测项目
m0_75047393
YOLO目标检测人工智能
一、前言(一)、什么是目标检测目标检测是指在图像或视频中准确地识别和定位出现的特定目标物体的任务。目标检测通常包括以下几个步骤:目标分类:确定图像中出现的物体属于哪一类别,例如汽车、行人、狗等。目标定位:确定图像中物体的位置,通常通过绘制边界框或遮罩来标识物体的位置。目标识别:将检测到的目标与预定义的类别进行匹配,以便为目标添加语义标签。多目标检测:在一张图像中检测并识别多个目标,包括重叠目标和不
- 【系统稳定性】1.11 QVM稳定性问题分析
高桐@BILL
qnx座舱系统智能座舱
目录写在前面一,qvm进程异常1.1进程崩溃(Coredump)1.2进程卡死1.3进程重启二,qvm进程异常分析过程写在前面在QVM(QuantumVirtualMachine)作为HOSTQNX的Guest,同样会遇到重启、Watchdog(看门狗)等稳定性问题。这里我们把qvm的异常归类为两类问题,如下:qvm进程异常qmv中la异常qvm进程异常就很好理解了,我们就把他作为一个qnx内核上
- Java容器化环境一致性:3大绝招教你告别“薛定谔的Bug”!从踩坑到闭眼部署的终极指南
墨瑾轩
Java乐园bug
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣第一章:为什么你的Java容器像薛定谔的猫?“本地跑得好好的,一上容器就翻车?”“测试环境稳如狗,生产环境秒变脆皮鸭?”这都是环境一致性在作妖!容器化本为解决环境差异而生,但如果连Dockerfile都写得像抽盲盒…(摇头)第二章:容器化环境三大杀手️♀️杀手
- WiFi定位:宠物安全的“秘密武器”
2401_88540551
宠物智能硬件智能手表物联网网络无人机智慧城市
从「全网寻狗」到「实时掌控」的进化史凌晨三点收到邻居转发的「寻狗启事」,配图里的金毛犬项圈上赫然挂着某品牌定位器——这样的魔幻场景在养宠圈并不罕见。随着宠物经济突破3000亿规模,智能定位器早已从「小众玩具」变成「刚需装备」。但你知道吗?那些让主人安心的定位数据背后,WiFi技术正在悄悄扮演着「隐形守护者」的角色。一、WiFi定位:GPS盲区里的「精准刺客」传统GPS定位在开阔地带能精确到米级,但
- 图片生成Prompt编写技巧
赫萝的红苹果
prompt
1.图片情绪(场景氛围)一张图片一般都会有一个情绪基调,因为作画本质上也是在传达一些情绪,一般都会借助图片的氛围去转达。例如:比如家庭聚会一般是欢乐、喜乐融融。断壁残垣一般是悲凉。还有萧瑟、孤寂等。2.补充细节,多使用描述性的形容词描述图片中涉及到的所有元素。使用形容词补充元素的细节,和扩句差不多。例如一条狗,可以加上体型、颜色、种类,一条黄色的很可爱的小小个的中华田园犬。3.指定视角相同的景色,
- 程序员方法论系列:“类”有啥用?
Foyo Designer
程序员方法论java程序人生改行学it
老铁们,上一篇,我们了解了什么是“类”(点击查看前文)今儿个咱们唠唠这个“类”啊,这玩意儿到底有啥用?“类”是咱们编程世界里的大拿,跟现实世界那叫一个紧密相连。咱得好好掰扯掰扯,这“类”到底是咋回事,咋就能把现实世界给抽象化了呢?首先,咱得明白,这个“类”啊,它就像是现实世界的一个影子,咱们用编程语言给它画出来。比如说,咱们看到的猫啊狗啊,那都是现实世界里的东西,咱们用“类”来给它们建模,这不就是
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多