DFS遍历以及反转二叉树Python实现

如果一个二叉树,我们要按照深度优先方式遍历它,需要做三件事情:遍历左子树、遍历右子树和访问根节点。下面使用L、R、D表示这三项工作。
DFS遍历以及反转二叉树Python实现_第1张图片
选择这三项工作的不同顺序,就可以得到三种常见遍历顺序:
1. 先根序遍历(按照DLR顺序)
2. 中根序遍历(按照LDR顺序)
3. 后根序遍历(按照LRD顺序)

二叉树的list实现

二叉树是递归结构,Python的list也是递归结构。基于list类型很容易实现二叉树,例如,可以如下设计:
1. 空树用None表示
2. 非空二叉树用包含三个元素的表[d, l, r]表示,其中d 表示存在根节点的元素,l和r是两棵子树,采用与整个二叉树同样结构的list表示。
例如:
DFS遍历以及反转二叉树Python实现_第2张图片
[‘A’, [‘B’, None, None],
[‘C’, [‘D’, [‘F’, None, None], [‘G’, None, None]],
[‘E’, [‘H’, None, None], [‘I’, None, None]]]]
下面就用Python代码实现:

class BinTreeList(object):
    def BinTree(self, data, left=None, right=None):
        return [data, left, right]
    
    def root(self, btree):
        return btree[0]

    def left(self, btree):
        return btree[1]

    def right(self, btree):
        return btree[2]

    def set_root(self, btree, data):  # 设置root结点
        btree[0] = data

    def set_left(self, btree, left):    # 设置左子树
        btree[1] = left

    def set_right(self, btree, right):  # 设置右子树
        btree[2] = right

    def preorder(self, btree):   # 先根序遍历
        if btree is not None:
            print(self.root(btree))
            self.preorder(self.left(btree))
            self.preorder(self.right(btree))

    def midorder(self, btree):  # 中根序遍历
        if btree is not None:
            self.midorder(self.left(btree))
            print(self.root(btree))
            self.midorder(self.right(btree))

    def posorder(self, btree):  # 后根序遍历
        if btree is not None:
            self.posorder(self.left(btree))
            self.posorder(self.right(btree))
            print(self.root(btree))

    def reverse(self, btree):   # 反转二叉树
        if btree is not None:
            btree[1], btree[2] = btree[2], btree[1]
            self.reverse(self.left(btree))
            self.reverse(self.right(btree))

下面,我们进行测试:

if __name__ == "__main__":
    bintree = BinTreeList()
    t1 = bintree.BinTree("A", bintree.BinTree("B"),
                                bintree.BinTree("C",
                                bintree.BinTree("D", bintree.BinTree("F"), bintree.BinTree("G")),
                                bintree.BinTree("E", bintree.BinTree("H"), bintree.BinTree("I"))))
    print(t1)
    bintree.preorder(t1)
    bintree.midorder(t1)
    bintree.posorder(t1)
    print(bintree.root(t1))

[‘A’, [‘B’, None, None], [‘C’, [‘D’, [‘F’, None, None], [‘G’, None, None]], [‘E’, [‘H’, None, None], [‘I’, None, None]]]]
然后,可以分别测试先、中、后根序遍历是否准确。
最后,我们可以反转二叉树,看看反转之后的二叉树是什么样的。

if __name__ == "__main__":
    bintree = BinTreeList()
    t1 = bintree.BinTree("A", bintree.BinTree("B"),
                                bintree.BinTree("C",
                                bintree.BinTree("D", bintree.BinTree("F"), bintree.BinTree("G")),
                                bintree.BinTree("E", bintree.BinTree("H"), bintree.BinTree("I"))))
    # bintree.set_left(bintree.left(t1), bintree.BinTree(5))
    print(t1)
    bintree.reverse(t1)
    bintree.preorder(t1)

[A,C,E,I,H,D,G,F,B]——这就是反转之后的二叉树先根遍历结果,其实就是将左右子树的结点相互调换。

你可能感兴趣的:(算法之路)