大家在做数据抓取的时候,经常遇到由于网络问题导致的程序保存,先前只是记录了错误内容,并对错误内容进行后期处理。
原先的流程:
def crawl_page(url):
pass
def log_error(url):
pass
url = ""
try:
crawl_page(url)
except:
log_error(url)
改进后的流程:
attempts = 0
success = False
while attempts < 3 and not success:
try:
crawl_page(url)
success = True
except:
attempts += 1
if attempts == 3:
break
最近发现的新的解决方案:retrying
retrying是一个 Python的重试包,可以用来自动重试一些可能运行失败的程序段。retrying
提供一个装饰器函数retry
,被装饰的函数就会在运行失败的条件下重新执行,默认只要一直报错就会不断重试。
import random
from retrying import retry
@retry
def do_something_unreliable():
if random.randint(0, 10) > 1:
raise IOError("Broken sauce, everything is hosed!!!111one")
else:
return "Awesome sauce!"
print do_something_unreliable()
如果我们运行have_a_try
函数,那么直到random.randint
返回5,它才会执行结束,否则会一直重新执行。
retry还可以接受一些参数,这个从源码中Retrying类的初始化函数可以看到可选的参数:
stop_max_attempt_number
:用来设定最大的尝试次数,超过该次数就停止重试stop_max_delay
:比如设置成10000,那么从被装饰的函数开始执行的时间点开始,到函数成功运行结束或者失败报错中止的时间点,只要这段时间超过10秒,函数就不会再执行了wait_fixed
:设置在两次retrying
之间的停留时间wait_random_min和wait_random_max
:用随机的方式产生两次retrying
之间的停留时间wait_exponential_multiplier和wait_exponential_max
:以指数的形式产生两次retrying
之间的停留时间,产生的值为2^previous_attempt_number * wait_exponential_multiplier
,previous_attempt_number
是前面已经retry
的次数,如果产生的这个值超过了wait_exponential_max
的大小,那么之后两个retrying之间的停留值都为wait_exponential_max
。这个设计迎合了exponential backoff
算法,可以减轻阻塞的情况。retry_on_exception
传入一个函数对象:def retry_if_io_error(exception):
return isinstance(exception, IOError)
@retry(retry_on_exception=retry_if_io_error)
def read_a_file():
with open("file", "r") as f:
return f.read()
在执行
read_a_file
函数的过程中,如果报出异常,那么这个异常会以形参
exception
传入
retry_if_io_error
函数中,如果
exception
是
IOError
那么就进行
retry
,如果不是就停止运行并抛出异常。
我们还可以指定要在得到哪些结果的时候去retry
,这个要用retry_on_result
传入一个函数对象:
def retry_if_result_none(result):
return result is None
@retry(retry_on_result=retry_if_result_none)
def get_result():
return None
在执行get_result
成功后,会将函数的返回值通过形参result
的形式传入retry_if_result_none
函数中,如果返回值是None
那么就进行retry
,否则就结束并返回函数值。