- 机器学习笔记:MATLAB实践
techDM
机器学习笔记matlabMatlab
在机器学习领域,MATLAB是一种功能强大且广泛使用的工具,它提供了许多内置函数和工具箱,方便开发者进行各种机器学习任务。本文将介绍一些常见的机器学习任务,并提供相应的MATLAB源代码示例。数据预处理在进行机器学习之前,通常需要对原始数据进行预处理。这包括数据清洗、特征选择、特征缩放和数据划分等步骤。%导入数据data=readmatrix('data.csv');%数据清洗cleaned_da
- 线性代数和c语言先学哪个,线性代数和哪个更有用?
段丞博
线性代数和c语言先学哪个
一、从数学与应用数学这个专业来分析下“线性代数”和“高等数学”这两块的内容,无论哪块知识在“考研究生数学科目中的考试”都会涉汲到的,而且有些专业的考试也包括概率论与数理统计这块知识。线性代数和哪个更有用?1、线性代数内容:行列式、矩阵、向量、线性方程组、特征值和特征向量、二次型。2、高等数学内容:函数·极限·连续、导数与微分、不定积分、定积分及广义积分、中值定理的证明、常微分方程、一元微积分的应用
- ICBDDM2025:大数据与数字化管理前沿峰会
鸭鸭鸭进京赶烤
学术会议大数据图像处理计算机视觉AI编程人工智能机器人考研
在选择大学专业时,可以先从自身兴趣、能力和职业规划出发,初步确定几个感兴趣的领域。然后结合外部环境因素,如专业前景、教育资源和就业情况等,对这些专业进行深入的分析和比较。大数据专业:是一个热门且前沿的学科领域,它涉及到数据的收集、存储、处理、分析和应用等多个方面。课程设置基础课程数学基础:高等数学、线性代数、概率论与数理统计等。这些课程为大数据分析提供了必要的数学工具,例如线性代数在机器学习算法中
- 机器学习笔记【Week9】
kuiini
人工智能机器学习人工智能
一、异常检测问题动机在现实中,我们经常会遇到“异常检测”的任务:识别罕见、异常、不符合正常模式的数据点。例:工业设备故障检测,银行欺诈识别,异常流量检测等。核心特点:异常样本稀少,难以用监督学习训练模型。二、高斯分布建立算法前,需要假设每个特征满足高斯(正态)分布。在单一特征xjx_jxj上:p(xj;μj,σj2)=12π σjexp(−(xj−μj)22σj2)p(x_j;\mu_j,\si
- 【概率论与数理统计】第二章 随机变量及其分布(1)
Arthur古德曼
概率论与数理统计概率论随机变量分布离散型连续型夏明亮
第二章随机变量及其分布第一章种学习了随机现象、随机试验、随机事件等概念,讨论了随机事件的关系、运算以及概率;且只考虑了个别事件下的频率问题。接下来,进一步第需要建立随机试验结果与实数的对应关系,这类似于函数的映射,我们称之为随机变量,以便使用高等数学的方法来研究随机试验。1离散型随机变量1.1随机变量的概念随机变量的数学定义:**定义1:**设EEE为随机试验,Ω\OmegaΩ为其样本空间,若对于
- 吴恩达机器学习笔记(1)—引言
大饼酥
人工智能机器学习人工智能吴恩达
目录一、欢迎二、机器学习是什么三、监督学习四、无监督学习一、欢迎机器学习是当前信息技术领域中最令人兴奋的方向之一。在这门课程中,你不仅会学习机器学习的前沿知识,还将亲手实现相关算法,从而深入理解其内部机理。事实上,机器学习已广泛渗透进我们的日常生活。例如,每次你使用Google、Bing进行搜索,或用Facebook、Apple的图像识别功能识别朋友,甚至邮箱中的垃圾邮件过滤器,背后都离不开机器学
- 斯坦福CS229机器学习笔记-Lecture2-线性回归+梯度下降+正规方程组
Teeyohuang
机器学习CS229-吴恩达机器学习笔记CS229吴恩达机器学习
声明:此系列博文根据斯坦福CS229课程,吴恩达主讲所写,为本人自学笔记,写成博客分享出来博文中部分图片和公式都来源于CS229官方notes。CS229的视频和讲义均为互联网公开资源Lecture2这一节主要讲的是三个部分的内容:·LinearRegression(线性回归)·GradientDescent(梯度下降)·NormalEquations(正规方程组)1、线性回归首先给了一个例子,如
- 机器学习笔记 周志华 第一章绪论
Olivia_ll
learningnotemachinelearningmachinelearning
概念和术语属性空间(attributespace)/样本空间(samplespace)/输入空间:属性张成的空间特征向量(featurevector):一个示例标记(label):关于示例结果的信息样例(example):拥有了标记信息的示例标记空间(labelspace)/输出空间:所有标记的集合监督学习(supervisedlearning)分类(classification)——预测离散值回
- 最大似然估计(MLE)与最小二乘估计(LSE)的区别
江湖小妞
概率论
最大似然估计与最小二乘估计的区别标签(空格分隔):概率论与数理统计最小二乘估计对于最小二乘估计来说,最合理的参数估计量应该使得模型能最好地拟合样本数据,也就是估计值与观测值之差的平方和最小。设Q表示平方误差,Yi表示估计值,Ŷi表示观测值,即Q=∑ni=1(Yi−Ŷi)2最大似然估计对于最大似然估计来说,最合理的参数估计量应该使得从模型中抽取该n组样本的观测值的概率最大,也就是概率分布函数或者
- 机器学习笔记【Week6】
kuiini
人工智能机器学习人工智能
一、模型结果下一步训练模型得到结果后,常面临:模型性能不理想,下一步如何改进?通过对训练误差和验证误差的观察,判断是高偏差(欠拟合)还是高方差(过拟合)。一般步骤:计算训练误差和验证误差,不包含正则项。判断两者的大小和差距。根据判断选择策略:情况训练误差验证误差结论改进方向欠拟合(高偏差)高高模型能力不足增加特征,减小正则化过拟合(高方差)低高泛化能力差增加训练数据,增加正则化二、评估假设的误差训
- 机器学习笔记:时域和频域变换
灰暗世界%
机器学习笔记机器学习笔记人工智能
加窗操作使用内置的STFT/ISTFT接口这种方法利用torch.stft(内部采用rfft)和torch.istft完成变换,同时借助加窗(例如Hann窗)保证帧内加窗并采用重叠相加(常用50%重叠)实现完美重构。窗口长度可以灵活设置,例如64或32。这种方式利用了PyTorch内置的STFT与ISTFT函数,它们内部使用了rfft/irfft,同时支持加窗并且能够保证重构出的信号长度与输入一致
- 机器学习笔记——特征工程
好评笔记
机器学习人工智能深度学习AIGC算法岗校招实习
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的特征工程方法、正则化方法和简要介绍强化学习。文章目录特征工程(FzeatureEngineering)1.特征提取(FeatureExtraction)手工特征提取(ManualFeatureExtraction):自动特征提取(AutomatedFeatureExtraction):2.特征选择
- AIGC视频生成模型:ByteDance的PixelDance模型
好评笔记
AIGC深度学习人工智能计算机视觉机器学习transformer论文阅读
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍ByteDance的视频生成模型PixelDance,论文于2023年11月发布,模型上线于2024年9月,同时期上线的模型还有Seaweed(论文未发布)。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录热门专栏机器学习深度学习
- Meta的AIGC视频生成模型——Emu Video
好评笔记
AIGC深度学习人工智能机器学习transformer校招面试八股
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍Meta的视频生成模型EmuVideo,作为Meta发布的第二款视频生成模型,在视频生成领域发挥关键作用。优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录论文摘要引言相关工作文本到图像(T2I)扩散模型视频生成/预测文本到视频(T2V)生成分解生成方法预备知识EmuVideo生成步骤图
- Python机器学习笔记(二十五、算法链与管道)
FreedomLeo1
Python机器学习机器学习算法pythonmake_pipelinePipelinenamed_steps属性
对于许多机器学习算法,特定数据表示非常重要。首先对数据进行缩放,然后手动合并特征,再利用无监督机器学习来学习特征。因此,大多数机器学习应用不仅需要应用单个算法,而且还需要将许多不同的处理步骤和机器学习模型链接在一起。Pipeline类可以用来简化构建变换和模型链的过程。将Pipeline和GridSearchCV结合起来,可以同时搜索所有处理步骤中的参数。举例:使用MinMaxScaler对can
- Python机器学习笔记(二十三 模型评估与改进-网格搜索)
FreedomLeo1
Python机器学习机器学习python支持向量机交叉验证网格搜索scikit-learn
上一次学习了评估一个模型的泛化能力,现在继续学习通过调参来提升模型的泛化性能。scikit-learn中许多算法的参数设置,在尝试调参之前,重要的是要理解参数的含义。找到一个模型的重要参数(提供最佳泛化性能的参数)的取值是一项棘手的任务,但对于几乎所有模型和数据集来说都是必要的。scikit-learn中有一些标准方法可以帮我们完成调参。最常用的方法就是网格搜索(gridsearch),它主要是指
- 吴恩达机器学习笔记:特征与多项式回归
ちゆきー
机器学习笔记回归
1.特征和多项式回归如房价预测问题,ℎθ(x)=θ0+θ1×frontage+θ2×deptℎx1=frontage(临街宽度),x2=deptℎ(纵向深度),x=frontage∗deptℎ=area(面积),则:hθ(x)=θ0+θ1xh_\theta(x)=\theta_0+\theta_1xhθ(x)=θ0+θ1x线性回归并不适用于所有数据,有时我们需要曲线来适应我们的数据,比如一个二次方
- 26考研数学全年备考规划!!!
数学再爱我一次5555
考研学习大数据
参考书:《张宇考研数学基础30讲》、《1000题》、《张宇考研数学强化36讲》、《张宇8➕4预测卷备考工具:考研数学欧几里得小程序学习资源类全面资源覆盖:整合历年真题库、各类数学专辑和选择题库,涵盖高等数学、线性代数、概率论与数理统计等考研数学主要科目,满足用户各阶段复习需求。独家不跳步解析:每一道题目都配有详细到每一步骤的解析,确保用户完全掌握解题逻辑,能清楚了解重点题、难题的解题思路,有助于锻
- 吴恩达机器学习笔记:多维梯度下降实践
ちゆきー
机器学习笔记计算机视觉
1.特征放缩在我们面对多维特征问题的时候,我们要保证这些特征都具有相近的尺度,这将帮助梯度下降算法更快地收敛。以房价问题为例,假设我们使用两个特征,房屋的尺寸和房间的数量,尺寸的值为0-2000平方英尺,而房间数量的值则是0-5,以两个参数分别为横纵坐标,绘制代价函数的等高线图能看出图像会显得很扁,梯度下降算法需要非常多次的迭代才能收敛。解决的方法是尝试将所有特征的尺度都尽量缩放到-1到1之间。如
- 吴恩达机器学习笔记:监督学习
ちゆきー
机器学习笔记学习
1.回归我们用一个例子介绍什么是监督学习把正式的定义放在后面介绍。假如说你想预测房价。前阵子,一个学生从波特兰俄勒冈州的研究所收集了一些房价的数据。你把这些数据画出来,看起来是这个样子:横轴表示房子的面积,单位是平方英尺,纵轴表示房价,单位是千美元。那基于这组数据,假如你有一个朋友,他有一套750平方英尺房子,现在他希望把房子卖掉,他想知道这房子能卖多少钱。我们应用学习算法,可以在这组数据中画一条
- 金融学知识笔记
Alessio Micheli
金融概率论
金融学知识笔记一、引言金融学它结合了数学、概率论、统计学、经济学和计算机科学等多学科的知识,用于解决金融领域中的各种问题,如金融衍生品定价、投资组合优化、风险管理和固定收益证券分析等。通过对金融学的学习,我们可以更好地理解和分析金融市场中的复杂现象,并为金融决策提供科学依据。二、概率论与数理统计基础(一)随机变量定义随机变量XXX是一个从样本空间Ω\OmegaΩ到实数集R\mathbb{R}R的函
- 大连理工大学选修课——机器学习笔记(7):集成学习及随机森林
江安的猪猪
大连理工大学选修:机器学习机器学习笔记集成学习
集成学习及随机森林集成学习概述泛化能力的局限每种学习模型的能力都有其上限限制于特定结构受限于训练样本的质量和规模如何再提高泛化能力?研究新结构扩大训练规模提升模型的泛化能力创造性思路组合多个学习模型集成学习集成学习不是特定的学习模型,而实一种构建模型的思路,一种训练学习的思想强可学习和弱可学习强可学习:对于一个概念或者一个类,如果存在一个多项式学习算法可以学习它,正确率高,则该概念是强可学习的。弱
- 机器学习笔记:python中使用sklearn的linear_model回归预测
代码先觉
pythonpythonsklearn
fromsklearnimportlinear_model#LinearRegression拟合一个带有系数w=(w_1,...,w_p)的线性模型,#使得数据集实际观测数据和预测数据(估计值)之间的残差平方和最小。reg=linear_model.LinearRegression()reg.fit([[0,0],[1,2],[2,4]],[0,1,2])print(reg.coef_)print
- 机器学习笔记 图像特征提取器(卷积变体)的技术发展与演变
坐望云起
深度学习从入门到精通机器学习笔记人工智能
一、图像特征提取器简述图像特征提取器是可用于从图像中学习表示的函数或模块。最常见的特征提取器类型是卷积,其中内核在图像上滑动,允许参数共享和平移不变性。在深度学习技术的快速发展过程中,基于卷积也演变出来了若干新技术由于图像特征的提取,这里进行了一下简单梳理,一是加强了解,二是备忘。下面的清单每项都只是一个概念,因为每个概念都产生了若干论文。1、卷积卷积是一种矩阵运算,由一个内核组成,一个小的权重矩
- 机器学习笔记 - labelme标注工具使用
坐望云起
深度学习从入门到精通python机器学习labelme
简介在自己的数据集上进行语义分割最基础的一步便是对图像进行标注,以训练得到自己的模型,标注是一个比较繁琐的活,所以需要一个好的标注工具。MIT推出一个很多人都使用的labelme开源的LabelMe的目标是提供一个在线注释工具,以建立用于计算机视觉研究的图像数据库。官方地址:LabelMe.TheOpenannotationtoolMIT的这个貌似需要用到matlab,有兴趣的可以自行看看,我们这
- 条件概率、全概率公式与贝叶斯公式
对许
基础理论概率论
条件概率、全概率公式与贝叶斯公式1、事件与事件运算2、条件概率与全概率公式3、贝叶斯公式1、事件与事件运算本文旨在回顾一下《概率论与数理统计》的知识,首先,我们来看一下其中的一些基本概念与事件的运算基本概念如下:样本空间:一次试验所有可能的结果的集合称为样本空间,用Ω\OmegaΩ表示样本点:每一种可能的结果称为样本点,样本点也称为单例、基本事件随机事件:一个随机事件是样本空间Ω\OmegaΩ的子
- 【概率论】分布函数的定义与应用:从直观到数学形式
HP-Succinum
概率论概率论
目录1.分布函数的直观引入1.1从一个例子出发1.2累积分布与分布函数2.分布函数的定义2.1数学定义2.2分布函数的图像3.分布函数的性质4.离散型与连续型分布函数4.1离散型分布函数4.2连续型分布函数5.应用与计算5.1由分布函数计算概率5.2分布函数求导6.总结与展望分布函数(CumulativeDistributionFunction,CDF)是概率论与数理统计中的核心概念,它用一个函数
- 【数学】概率论与数理统计(五)
丷从心
#概率论与数理统计概率论
文章目录@[toc]二维随机向量及其分布随机向量离散型随机向量的概率分布律性质示例问题解答连续型随机向量的概率密度函数随机向量的分布函数性质连续型随机向量均匀分布边缘分布边缘概率分布律边缘概率密度函数二维正态分布示例问题解答边缘分布函数二维随机向量及其分布随机向量一般地,称nnn个随机变量的整体X=(X1,X2,⋯ ,Xn)X=(X_{1},X_{2},\cdots,X_{n})X=(X1,X2,
- 吴恩达机器学习笔记复盘(二)监督学习和无监督学习
wgc2k
机器学习机器学习笔记学习
监督学习经济价值以及定义监督学习是机器学习中创造了99%经济价值的类型,它是学习输入到输出映射的算法,关键在于给学习算法提供包含正确答案(即给定输入X的正确标签Y)的学习例子。生活中的例子邮件分类,输入是电子邮件,输出是判断邮件是否为垃圾邮件。语音识别,输入音频剪辑,输出文本记录。机器翻译,输入一种语言文本,输出其他语言的相应翻译。在线广告,输入广告和用户信息,预测用户是否点击广告,为公司带来大量
- 概率论与数理统计
ZhuBin365
人工智能概率论自动化人工智能机器学习深度学习
概率论部分1.随机事件与概率样本空间与随机事件:样本空间是随机试验所有可能结果的集合,通常用Ω表示。随机事件是样本空间的子集,表示随机试验的某些可能结果的集合。概率的公理化定义:概率是定义在事件集合上的函数P,满足三条公理:①非负性:P(A)≥0;②规范性:P(Ω)=1;③可列可加性:若事件A₁,A₂,...互不相容,则P(A₁∪A₂∪...)=P(A₁)+P(A₂)+...条件概率与全概率公式:
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持