无向有环图的最长路径算法

一、问题描述

前两天一个学金融的小伙伴找我帮忙写计算机课的作业,因为英语不好,以为是让求两点间的最大路径,之前自己实现过dijkstra算法,觉得可能不难就答应了。但是只想到了用穷举法枚举出所有路径的笨方法

无向有环图的最长路径算法_第1张图片无向有环图的最长路径算法_第2张图片无向有环图的最长路径算法_第3张图片

二、思路阐述

      既然是图,就要先把图的关系表示出来,咱们用Vertex.java来表示结点,结点维护着与它相连的边,Edge.java来表示边,GraphInterface接口来规范一些模板方法。LifetimeGraph.java来实现具体查找最长路径的代码。在LifetimeGraph中,首先是添加结点和边的方法,然后是查找两点间最大路径的方法。该方法先找出两点间的所有路径,使用了递归,然后在所有路径中找出最长的。

 Vertex.java:

import java.util.HashMap;

/**
 * Vertex Class
 *
 * A vertex in the graph.
 * Stores the id of the vertex and the edges.
 *
 * Eg. if this is Vertex1 and it connects to Vertex2
 * this.edges[2] == edge between V1 and V2.
 */

/**
 * The vertex class holds the "id" of the vertex and the
 * edges connected.
 *
 * To be inserted into the graph.
 */
public class Vertex {
    private int id;
    private HashMap edges;

    /**
     * Initialises the vertex and the empty set of edges.
     * @param id: the vertex ID.
     */
    public Vertex(int id) {
        this.id = id;
        this.edges = new HashMap<>();
    }

    /**
     * Get the vertex ID.
     * @return - The id of the vertex.
     */
    public int getId() {
        return this.id;
    }

    /**
     * Return the edges for this node.
     * @return: The map of edges for this node.
     */
    public HashMap getEdges() {
        return this.edges;
    }

    /**
     * Return the edge from this vertex to the given
     * vertex if exists.
     * @param v (Vertex class) - The destination for the edge.
     * @return: The edge to the vertex or null. 
     */
    public Edge getEdgeTo(Vertex v) {
        return this.edges.get(v.getId());
    }

    /**
     * Add the edge to the "Adjacency List"
     * @param v: The vertex this edge is connected to.
     * @param e: The edge between this vertex and the given vertex.
     */
    public void addEdge(Vertex v, Edge e) {
        this.edges.put(v.getId(), e);
    }
}

Edge.java

/**
 * Edge Class
 *
 * Provides the "lifetime" between two vertices
 * that are in a graph.
 */


/**
 * Edge class holds the lifetime between two vertices.
 */
public class Edge {


    private Vertex a;
    private Vertex b;
    private int lifetime;

    /**
     * Initialises the edge with two vertices
     * @param a - The vertex to connect the edge to.
     * @param b - The vertex to connect the edge to.
     * @param lifetime - The lifetime between two vertices
     */
    public Edge(Vertex a, Vertex b, int lifetime) {
        this.a = a;
        this.b = b;
        this.lifetime = lifetime;
    }

    /**
     * ***DO NOT CHANGE***
     * ToString method, allows the edge to be printed in the results.
     * @return String representation of the edge.
     */
    public String toString() {
        return String.format("V%s-%d-V%s", this.a.getId(), this.lifetime, this.b.getId());
    }

    /**
     * Gets the lifetime of the edge.
     * @return - The lifetime of the edge.
     */
    public int getLifetime() {
        return lifetime;
    }

    /**
     * Return the vertex A of the edge.
     * @return vertex A
     */
    public Vertex getA() {
        return a;
    }

    /**
     * Return the vertex B of the edge.
     * @return vertex B
     */
    public Vertex getB() {
        return b;
    }
}

LifetimeGraph.java

import com.sun.deploy.util.ArrayUtil;
import org.omg.IOP.CodeSets;

import java.util.*;

/**
 * Lifetime Graph
 *
 * Holds a graph of vertices where the edges between vertices has a lifetime.
 * The graph is implemented using an adjacency list.
 */

/**
 * The lifetime graph to implement.
 *
 * Implement the methods for adding an edge, getting the edge set and
 * finding the lifetime path.
 */
public class LifetimeGraph implements GraphInterface {

    private HashMap adjacencyList;

    /**
     * Initialises the grpah with an empty adjacency list.
     */
    public LifetimeGraph() {
        this.adjacencyList = new HashMap<>();
    }

    /**
     * Add an edge to the graph between the given vertices (a, b)
     *
     *
     * If the vertex doesn't exist, then create the vertex and add it to
     * the adjacency list.
     *
     * @param a: Vertex A ID
     * @param b: Vertex B ID
     * @param lifetime:  Lifetime of the edge.
     */
    @Override
    public void addEdge(int a, int b, int lifetime) {
        Vertex vertex_a = adjacencyList.get(a);
        Vertex vertex_b = adjacencyList.get(b);
        //如果a不存在,创建a
        if(vertex_a == null) {
            vertex_a = new Vertex(a);
            adjacencyList.put(a, vertex_a);
        }
        //如果b不存在,创建b
        if(vertex_b == null) {
            vertex_b = new Vertex(b);
            adjacencyList.put(b, vertex_b);
        }
        Edge edgeTo = vertex_a.getEdgeTo(vertex_b);
        if(edgeTo == null) {
            vertex_a.addEdge(vertex_b, new Edge(vertex_a, vertex_b, lifetime));
            vertex_b.addEdge(vertex_a, new Edge(vertex_b, vertex_a, lifetime));
        } else {
            edgeTo.setLifetime(lifetime);
        }
    }
    private Integer[] setToArray(Set values) {
        Iterator iterator1 = values.iterator();
        Integer[] integers = new Integer[values.size()];
        int i = 0;
        while(iterator1.hasNext()) {
            integers[i] = iterator1.next();
            i++;
        }
        Arrays.sort(integers);

        return integers;
    }
    /**
     * Return the set of edges in the graph
     *
     * The edges should be returned in order of vertices,
     * e.g. loop through vertices from 0-N.
     *
     * @return: List of edges in the graph.
     */
    @Override
    public Edge[] edges() {
        Set set = adjacencyList.keySet();
        Integer[] integers = setToArray(set);
        int i = 0;
        LinkedList linkedList = new LinkedList<>();
        for(i = 0; i < integers.length; i++) {
            int node = integers[i];
            Vertex vertex = adjacencyList.get(node);
            HashMap edges = vertex.getEdges();
            Set integers1 = edges.keySet();
            Integer[] integers2 = setToArray(integers1);
            for(int j = 0; j < integers2.length; j++) {
                if(integers2[j] > node) {
                    linkedList.addLast(vertex.getEdgeTo(adjacencyList.get(integers2[j])));
                }
            }
        }
        Edge[] edges1 = linkedList.toArray(new Edge[linkedList.size()]);

        return edges1;
    }

    /**
     * Return a maximum lieftime path between two vertices.
     *
     * @param start: (int) The ID of vertex A to begin the path.
     * @param end: (int) The ID of vertex B to end the path.
     * @return: The list of edges that create the path.
     */
    @Override
    public Edge[] lifetimePath(int start, int end) {
        LinkedList> allPaths = new LinkedList<>();
        LinkedList list = new LinkedList<>();
        addPath(allPaths, list, start, end);

        return findMaxLifeTimePath(allPaths);
    }

    //采用递归的方法进行枚举,由于是递归,所以是深度优先遍历,但是遍历的过程中要检测结点是否已经被加入了路径当中
    public void addPath(LinkedList> allPaths, LinkedList path, Integer node, Integer end) {
        path.add(node);//当前的path包含着根节点,即起点,path还有一个作用,就是用来检测下一个要加入的结点在路径中是否已经包含
        if(node == end) {//当遇到要达到的那个结点时,递归就结束了,只需要把路径加入到所有路径的list中
            allPaths.add(path);
        } else {
            Vertex vertex = adjacencyList.get(node);
            HashMap edges = vertex.getEdges();
            Set integers = edges.keySet();
            Iterator iterator = integers.iterator();
            while (iterator.hasNext()) {
                Integer next = iterator.next();
                if(path.contains(next)) {
                    continue;
                }
                addPath(allPaths, new LinkedList<>(path), next, end);
            }
        }
    }
    //这个方法用来查找所有路径中最长的那一条
    private Edge[] findMaxLifeTimePath(LinkedList> allPaths) {
        Iterator> iterator = allPaths.iterator();
        LinkedList max = null;
        int maxLifeTime = 0;
        while (iterator.hasNext()) {
//            int sum = -1 >>> 1;
            int sum = 0;
            LinkedList next = iterator.next();
            LinkedList next2 = new LinkedList<>();
            next2.addAll(next);//不修改原有创建好的路径
            //往下的代码很简单,就是计算出该路径的长度,判断是否是最长的
            Integer pop = next.pop();
            while(!next.isEmpty()) {
                Integer pop1 = next.pop();
                Vertex vertex = adjacencyList.get(pop);
                Edge edgeTo = vertex.getEdgeTo(adjacencyList.get(pop1));
                int lifetime = edgeTo.getLifetime();
                sum  += lifetime;
                pop = pop1;
            }
            if(sum > maxLifeTime) {
//                if(sum > maxLifeTime || max.size() > next2.size()) {
                    maxLifeTime = sum;
                    max = next2;
            }
        }

        Edge[] edges = new Edge[max.size()-1];
        int i = 0;
        Integer pop = max.pop();
        while(!max.isEmpty()) {
            Integer pop1 = max.pop();
            Vertex vertex = adjacencyList.get(pop);
            Edge edgeTo = vertex.getEdgeTo(adjacencyList.get(pop1));
            pop = pop1;
            edges[i++] = edgeTo;
        }

        return edges;
    }


}

 测试:咱们就用这个例子来测试

无向有环图的最长路径算法_第4张图片

先手动构建出来这个图表达的关系:

 

public class Main {
    public static void main(String[] args) {
        LifetimeGraph lifetimeGraph = new LifetimeGraph();
        /**
         *  V0-1-V1  V0-2-V2  V0-6-V3  V0-1-V4  V0-1-V5
         *  V0-1-V6  V0-1-V7  V1-8-V2  V1-5-V7  V2-8-V3
         *  V3-8-V4  V4-8-V5  V5-8-V6  V6-8-V7
         */
        lifetimeGraph.addEdge(0, 1, 1);
        lifetimeGraph.addEdge(0, 2, 2);
        lifetimeGraph.addEdge(0, 3, 6);
        lifetimeGraph.addEdge(0, 4, 1);
        lifetimeGraph.addEdge(0, 5, 1);
        lifetimeGraph.addEdge(0, 6, 1);
        lifetimeGraph.addEdge(0, 7, 1);
        lifetimeGraph.addEdge(1, 2, 8);
        lifetimeGraph.addEdge(1, 7, 5);
        lifetimeGraph.addEdge(2, 3, 8);
        lifetimeGraph.addEdge(3, 4, 8);
        lifetimeGraph.addEdge(4, 5, 8);
        lifetimeGraph.addEdge(5, 6, 8);
        lifetimeGraph.addEdge(6, 7, 8);
        Edge[] edges = lifetimeGraph.lifetimePath(6, 4);
        for (int i = 0; i < edges.length; i++) {
            System.out.println(edges[i]);
        }
    }
}

最后输出的结果如下:无向有环图的最长路径算法_第5张图片

 

三、程序分析

其实最后我同学告诉我理解错了题意,这个题不是求两点间的最长路径,而是求两点间生存时间最长的一条路径,lifetime不是距离,而是当前这条edge能够存在的时间。

但是其实非常好改进,只需要替换下面这段代码就行:改进的思路就是

一条路径的最大生存时间由该路径中lifetime最小的那条edge来决定
    private Edge[] findMaxLifeTimePath(LinkedList> allPaths) {
        Iterator> iterator = allPaths.iterator();
        LinkedList max = null;
        int maxLifeTime = 0;
        while (iterator.hasNext()) {
            int sum = -1 >>> 1;
//            int sum = 0;
            LinkedList next = iterator.next();
            LinkedList next2 = new LinkedList<>();
            next2.addAll(next);//不修改原有创建好的路径
            //往下的代码很简单,就是计算出存活时间最长的路径
            Integer pop = next.pop();
            while(!next.isEmpty()) {
                Integer pop1 = next.pop();
                Vertex vertex = adjacencyList.get(pop);
                Edge edgeTo = vertex.getEdgeTo(adjacencyList.get(pop1));
                int lifetime = edgeTo.getLifetime();
                sum  = sum > lifetime ? lifetime : sum;//一条路径的最大生存时间由该路径中lifetime最小的那条edge来决定
                pop = pop1;
            }
            if(sum >= maxLifeTime) {
                if (sum > maxLifeTime || max.size() > next2.size()) {
                    maxLifeTime = sum;
                    max = next2;
                }
            }
        }

无向有环图的最长路径算法_第6张图片

 

自我感觉非常差劲,像老太太的裹脚布一样又臭又长,但是想了好久没有想到如何用栈来替代递归。

希望大家在评论区给出一些指导性的意见。

你可能感兴趣的:(无向有环图的最长路径算法)