Spark Streaming源码解读之RDD生成全生命周期彻底研究和思考

RDD的三个问题

1.RDD到底是怎么生成的

2.具体执行的时候,是否和基于Spark Core上的RDD有所不同,runtime级别的

3.运行之后我们对RDD如何处理。会随batch duration不断的产生RDD,内存无法完全容纳这些对象。

每个batch

duration产生的作业执行完RDD之后怎么对以有的RDD进行管理是一个问题。

RDD生成的全生命周期:

ForEachDStream不一定会触发job的执行,会触发job产生,但job真正产生是由timer定时器产生的。

对DStream进行操作其实就是对RDD进行操作,是因为DStream就是一套RDD的模板,后面的DStream与前面的DStream有依赖关系。因为从后往前依赖所以可以推出前面的RDD(回溯)

* DStreams internally is characterized by a few basic properties:

*- A list of other DStreams that the DStream depends on

*  - A time interval at which the DStream generates an RDD

*  - A function that is used to generate an RDD after each time interval

abstract classDStream[T: ClassTag] (

@transientprivate[streaming]varssc: StreamingContext

)extendsSerializablewithLogging {

源码

DStream

/**

* Print the first num elements of each RDD generated in this DStream. This is an output

* operator, so this DStream will be registered as an output stream and there materialized.

*/

defprint(num: Int): Unit = ssc.withScope {

defforeachFunc: (RDD[T], Time) => Unit = {

(rdd: RDD[T], time: Time) => {

valfirstNum =

rdd.take(num +1)

// scalastyle:off println

println("-------------------------------------------")

println("Time: "+ time)

println("-------------------------------------------")

firstNum.take(num).foreach(println)

if(firstNum.length > num)println("...")

println()

// scalastyle:on println}

}

foreachRDD(context.sparkContext.clean(foreachFunc), displayInnerRDDOps =false)

}

private defforeachRDD(

foreachFunc: (RDD[T], Time) => Unit,

displayInnerRDDOps: Boolean): Unit = {

newForEachDStream(this,

context.sparkContext.clean(foreachFunc,false), displayInnerRDDOps).register()

}

/**

* Get the RDD corresponding to the given time; either retrieve it from cache

* or compute-and-cache it.

*/

private[streaming]final

defgetOrCompute(time: Time): Option[RDD[T]] = {

// If RDD was already generated, then retrieve it from HashMap,

// or else compute the RDD

generatedRDDs.get(time).orElse{

// Compute the RDD if time is valid (e.g. correct time in a sliding window)

// of RDD generation, else generate nothing.

if(isTimeValid(time)) {

valrddOption =createRDDWithLocalProperties(time, displayInnerRDDOps =false) {

// Disable checks for existing output directories in jobs launched by the streaming

// scheduler, since we may need to write output to an existing directory during checkpoint

// recovery; see SPARK-4835 for more details. We need to have this call here because

// compute() might cause Spark jobs to be launched.

PairRDDFunctions.disableOutputSpecValidation.withValue(true) {

compute(time)

}

}

rddOption.foreach {casenewRDD =>

// Register the generated RDD for caching and checkpointingif(storageLevel!=

StorageLevel.NONE) {

newRDD.persist(storageLevel)

logDebug(s"Persisting RDD${newRDD.id}for time$timeto$storageLevel")

}

if(checkpointDuration!=null&&

(time -zeroTime).isMultipleOf(checkpointDuration)) {

newRDD.checkpoint()

logInfo(s"Marking RDD${newRDD.id}for time$timefor

checkpointing")

}

generatedRDDs.put(time, newRDD)

}

rddOption

}else{

None

}

}

}

/** Checks whether the 'time' is valid wrt slideDuration for generating RDD */private[streaming]defisTimeValid(time: Time): Boolean = {

if(!isInitialized) {

throw newSparkException (this+" has not been

initialized")

}else if(time <=zeroTime|| !

(time -zeroTime).isMultipleOf(slideDuration)) {

logInfo("Time "+ time +" is

invalid as zeroTime is "+zeroTime+

" and

slideDuration is "+ slideDuration +" and difference is "+ (time -zeroTime))

false}else{

logDebug("Time "+ time +" is

valid")

true}

}

SocketInputDStream继承自ReceiverInputDStream

private[streaming]

classSocketInputDStream[T: ClassTag](

ssc_ : StreamingContext,

host:String,

port: Int,

bytesToObjects: InputStream =>Iterator[T],

storageLevel: StorageLevel

)extendsReceiverInputDStream[T](ssc_) {

ReceiverInputDStream

/**

* Generates RDDs with blocks received by the receiver of this stream. */

override

defcompute(validTime: Time):

Option[RDD[T]] = {

valblockRDD= {

if(validTime <graph.startTime) {

// If this is called for any time before the start time of the context,

// then this returns an empty RDD. This may happen when recovering from a

// driver failure without any write ahead log to recover pre-failure data.

newBlockRDD[T](ssc.sc, Array.empty)

}else{

// Otherwise, ask the tracker for all the blocks that have been allocated to this stream

// for this batch

valreceiverTracker = ssc.scheduler.receiverTrackervalblockInfos = receiverTracker.getBlocksOfBatch(validTime).getOrElse(id,Seq.empty)

// Register the input blocks information into InputInfoTrackervalinputInfo =StreamInputInfo(id, blockInfos.flatMap(_.numRecords).sum)

ssc.scheduler.inputInfoTracker.reportInfo(validTime, inputInfo)

// Create the BlockRDDcreateBlockRDD(validTime, blockInfos)

}

}

Some(blockRDD)

}

private[streaming]defcreateBlockRDD(time: Time,

blockInfos:Seq[ReceivedBlockInfo]): RDD[T] = {

if(blockInfos.nonEmpty) {

valblockIds = blockInfos.map { _.blockId.asInstanceOf[BlockId] }.toArray

// Are WAL record handles present with all the blocksvalareWALRecordHandlesPresent = blockInfos.forall { _.walRecordHandleOption.nonEmpty }

if(areWALRecordHandlesPresent) {

// If all the blocks have WAL record handle, then create a WALBackedBlockRDDvalisBlockIdValid = blockInfos.map { _.isBlockIdValid() }.toArray

valwalRecordHandles = blockInfos.map { _.walRecordHandleOption.get }.toArray

newWriteAheadLogBackedBlockRDD[T](

ssc.sparkContext, blockIds, walRecordHandles, isBlockIdValid)

}else{

// Else, create a BlockRDD. However, if there are some blocks with WAL info but not

// others then that is unexpected and log a warning accordingly.

if(blockInfos.find(_.walRecordHandleOption.nonEmpty).nonEmpty) {

if(WriteAheadLogUtils.enableReceiverLog(ssc.conf)) {

logError("Some blocks

do not have Write Ahead Log information; "+

"this is unexpected and data may not be recoverable after

driver failures")

}else{

logWarning("Some blocks have Write Ahead Log information; this is

unexpected")

}

}

valvalidBlockIds = blockIds.filter { id =>

ssc.sparkContext.env.blockManager.master.contains(id)

}

if(validBlockIds.size != blockIds.size) {

logWarning("Some blocks could not be

recovered as they were not found in memory. "+

"To prevent such data loss, enabled Write Ahead Log (see

programming guide "+

"for more

details.")

}

newBlockRDD[T](ssc.sc, validBlockIds)

}

}else{

// If no block is ready now, creating WriteAheadLogBackedBlockRDD or BlockRDD

// according to the configuration

if(WriteAheadLogUtils.enableReceiverLog(ssc.conf)) {

newWriteAheadLogBackedBlockRDD[T](

ssc.sparkContext, Array.empty, Array.empty, Array.empty)

}else{

newBlockRDD[T](ssc.sc, Array.empty)

}

}

}

MappedDStream

private[streaming]

classMappedDStream[T: ClassTag,U: ClassTag] (

parent: DStream[T],

mapFunc:T=>U

)extendsDStream[U](parent.ssc) {

override defdependencies:List[DStream[_]] =List(parent)

override defslideDuration: Duration = parent.slideDuration

override defcompute(validTime: Time): Option[RDD[U]] = {

parent.getOrCompute(validTime).map(_.map[U](mapFunc))

}

}

ForEachDStream

private[streaming]

classForEachDStream[T: ClassTag] (

parent: DStream[T],

foreachFunc: (RDD[T], Time) => Unit,

displayInnerRDDOps: Boolean

)extendsDStream[Unit](parent.ssc) {

override defdependencies:List[DStream[_]] =List(parent)

override defslideDuration: Duration = parent.slideDuration

override defcompute(validTime: Time): Option[RDD[Unit]] = None

override defgenerateJob(time: Time): Option[Job] = {

parent.getOrCompute(time)match{

caseSome(rdd) =>

valjobFunc = () =>createRDDWithLocalProperties(time, displayInnerRDDOps) {

foreachFunc(rdd, time)

}

Some(newJob(time, jobFunc))

caseNone => None

}

}

}

备注:

资料来源于:DT_大数据梦工厂(Spark发行版本定制)

更多私密内容,请关注微信公众号:DT_Spark

如果您对大数据Spark感兴趣,可以免费听由王家林老师每天晚上20:00开设的Spark永久免费公开课,地址YY房间号:68917580

你可能感兴趣的:(Spark Streaming源码解读之RDD生成全生命周期彻底研究和思考)