hive 练习影评案列

一、案列说明:

现有如此三份数据:

1、users.dat 数据格式为: 2::M::56::16::70072,

共有6040条数据
对应字段为:UserID BigInt, Gender String, Age Int, Occupation String, Zipcode String
对应字段中文解释:用户id,性别,年龄,职业,邮政编码

2、movies.dat 数据格式为: 2::Jumanji (1995)::Adventure|Children’s|Fantasy,

共有3883条数据
对应字段为:MovieID BigInt, Title String, Genres String
对应字段中文解释:电影ID,电影名字,电影类型

3、ratings.dat 数据格式为: 1::1193::5::978300760,

共有1000209条数据
对应字段为:UserID BigInt, MovieID BigInt, Rating Double, Timestamped String
对应字段中文解释:用户ID,电影ID,评分,评分时间戳

题目要求
  数据要求:
    (1)写shell脚本清洗数据。(hive不支持解析多字节的分隔符,也就是说hive只能解析’:’, 不支持解析’::’,所以用普通方式建表来使用是行不通的,要求对数据做一次简单清洗)
    (2)使用Hive能解析的方式进行

Hive要求:
    (1)正确建表,导入数据(三张表,三份数据),并验证是否正确

(2)求被评分次数最多的10部电影,并给出评分次数(电影名,评分次数)

(3)分别求男性,女性当中评分最高的10部电影(性别,电影名,影评分)

(4)求movieid = 2116这部电影各年龄段(因为年龄就只有7个,就按这个7个分就好了)的平均影评(年龄段,影评分)

(5)求最喜欢看电影(影评次数最多)的那位女性评最高分的10部电影的平均影评分(观影者,电影名,影评分)

(6)求好片(评分>=4.0)最多的那个年份的最好看的10部电影

(7)求1997年上映的电影中,评分最高的10部Comedy类电影

(8)该影评库中各种类型电影中评价最高的5部电影(类型,电影名,平均影评分)

(9)各年评分最高的电影类型(年份,类型,影评分)

(10)每个地区最高评分的电影名,把结果存入HDFS(地区,电影名,影评分)

二、数据下载

(https://files.cnblogs.com/files/qingyunzong/hive%E5%BD%B1%E8%AF%84%E6%A1%88%E4%BE%8B.zip)
解析
之前已经使用MapReduce程序将3张表格进行合并,所以只需要将合并之后的表格导入对应的表中进行查询即可.

三、前提准备

1、正确创建表,导入数据(三张表,三份数据),并验证是否正确.

1.分析需求

需要创建一个数据库movie,在movie数据库中创建3张表,t_user,t_movice,t_rating

t_user: userid bigint, sex string, age int, occupation string, zipcode string
t_movie: movieid bigint, moviename string, movietype string
t_rating: userid bigint, movieid bigint, rate double, times string

原数据是以::进行切分的,所以需要使用能解析多字节分隔符的Serde即可
使用RegexSerde, 需要两个参数:

input.regex = "(.*)::(.*)::(.*)"
output.format.string = "%1$s %2$s %3$s"

2.创建数据库

drop database if exists movie;
create database if not exists movie;
use movie;

hive 练习影评案列_第1张图片

3.创建t_user表

create table t_user(
userid bigint,
sex string,
age int,
occupation string,
zipcode string) 
row format serde 'org.apache.hadoop.hive.serde2.RegexSerDe' 
with serdeproperties('input.regex'='(.*)::(.*)::(.*)::(.*)::(.*)','output.format.string'='%1$s %2$s %3$s %4$s %5$s')
stored as textfile;

在这里插入图片描述

4.创建t_movie表

create table t_movie(
movieid bigint,
moviename string,
movietype string) 
row format serde 'org.apache.hadoop.hive.serde2.RegexSerDe' 
with serdeproperties('input.regex'='(.*)::(.*)::(.*)','output.format.string'='%1$s %2$s %3$s')
stored as textfile;

在这里插入图片描述

5.创建t_rating表

create table t_rating(
userid bigint,
movieid bigint,
rate double,
times string) 
row format serde 'org.apache.hadoop.hive.serde2.RegexSerDe' 
with serdeproperties('input.regex'='(.*)::(.*)::(.*)::(.*)','output.format.string'='%1$s %2$s %3$s %4$s')
stored as textfile;

在这里插入图片描述

四、导入数据

上传文件目录
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
查询所有导入文件

select t.* from t_user t;
select t.* from t_movie t;
select t.* from t_rating t;

五、分析查询数据

5.1 求被评分次数最多的10部电影,并给出评分次数(电影名,评分次数)

HIVE显示表头:set hive.cli.print.header=true;

(1) 思路分析:

1.需求字段: 电影名 t_movie.moviename
评分次数 t_rating.rate count()
2.核心SQL:按电影名进行分组统计,求出每部电影的评分次数并按照评分次数降序排序.

(2)完整SQL

create table answer2 as 
select a.moviename as moviename,count(a.moviename) as total 
from t_movie a join t_rating b on a.movieid=b.movieid 
group by a.moviename 
order by total desc 
limit 10;

hive 练习影评案列_第2张图片

select * from answer2;

hive 练习影评案列_第3张图片

5.2 分别求男性,女性当中评分最高的10部电影(性别,电影名,影评分)

(1) 分析思路:

1、需求字段:性别 t_user.sex
       电影名  t_movie.moviename
       影评分 t_rating.rate
      
2、核心SQL:三表联合查询,按照性别过滤条件,电影名作为分组条件,影评分作为排序条件进行查询

(2)完整SQL

女性当中评分最高的10部电影(性别,电影名,影评分)评论次数大于等于50次

create table answer3_F as 
select "F" as sex, c.moviename as name, avg(a.rate) as avgrate, count(c.moviename) as total  
from t_rating a 
join t_user b on a.userid=b.userid 
join t_movie c on a.movieid=c.movieid 
where b.sex="F" 
group by c.moviename 
having total >= 50
order by avgrate desc 
limit 10;

hive 练习影评案列_第4张图片

select * from answer3_F

hive 练习影评案列_第5张图片

5.3 男性当中评分最高的10部电影(性别,电影名,影评分)评分次数大于等于50次.

create table answer3_M as 
select "M" as sex, c.moviename as name, avg(a.rate) as avgrate, count(c.moviename) as total  
from t_rating a 
join t_user b on a.userid=b.userid 
join t_movie c on a.movieid=c.movieid 
where b.sex="M" 
group by c.moviename 
having total >= 50
order by avgrate desc 
limit 10;

hive 练习影评案列_第6张图片

select * from answer3_M;

hive 练习影评案列_第7张图片

5.4 求movieid=2116这部电影各年龄段(因为年龄就只有7个,就按这个分就好了)的平均影评(年龄段,影评分)

(1) 分析思路:

1、需求字段:年龄段  t_user.age
影评分 t_rating.rate

2、核心SQL:t_user和t_rating表进行联合查询,用movieid=2116作为过滤条件,用年龄段作为分组条件

(2)完整SQL:

create table answer4 as 
select a.age as age, avg(b.rate) as avgrate 
from t_user a join t_rating b on a.userid=b.userid 
where b.movieid=2116 
group by a.age;

hive 练习影评案列_第8张图片

select * from answer4;

hive 练习影评案列_第9张图片

5.5、求最喜欢看电影(影评次数最多)的那位女性评分最高的10部电影的平均影评分(观影者,电影名,影评分)

(1)分析思路

1、需求字段:观影者 t_rating.userid
电影名 t_movie.moviename
影评分 t_rating.rate

2、核心SQL:
A.需要先求出最喜欢看电影的那位女性
需要查询的字段:性别:t_user.sex
影次数:count(t_rating.userid)
   
    B.根据A中求出的女性userid作为where过滤条件,以看过的电影的影评分rate作为排序条件进行排序,求出评分最高的10部电影需要查询的字段:电影的ID:t_rating.movieid
    
    C.求出B中10部电影的平均影评分
     需要查询的字段:电影的ID:answer5_B.movieid
     影评分:t_rating.rate

(2)完整SQL

A 求需要先求出最喜欢看电影的那位女性

select a.userid, count(a.userid) as total 
from t_rating a join t_user b on a.userid = b.userid 
where b.sex="F" 
group by a.userid 
order by total desc 
limit 1;

在这里插入图片描述

B 根据A中求出的女性userid作为where过滤条件,以看过的电影的评分rate作为排序条件进行排序,求出评分最高的10部电影.

create table answer5_B as 
select a.movieid as movieid, a.rate as rate  
from t_rating a 
where a.userid=1150 
order by rate desc 
limit 10;

在这里插入图片描述

select * from answer5_B;

hive 练习影评案列_第10张图片
C.求出B中10部电影的平均影评分.

create table answer5_C as 
select b.movieid as movieid, c.moviename as moviename, avg(b.rate) as avgrate 
from answer5_B a 
join t_rating b on a.movieid=b.movieid 
join t_movie c on b.movieid=c.movieid 
group by b.movieid,c.moviename;

在这里插入图片描述

select * from answer5_C;

hive 练习影评案列_第11张图片

5.6、求好评(评分>=4.0)最多的那个年份的最好看的10部电影.

(1)分析思路:

1、需求字段:电影id t_rating.movieid
       电影名 t_movie.moviename(包含年份)
影评分 t_rating.rate
上映年份 xxx.years

2、核心SQL:
A.需要将t_rating和t_movie表进行联合查询,将电影名当中的上映年份截取出来,保存到临时表answer6_A中
需要查询的字段:电影id t_rating.movieid
电影名 t_movie.moviename(包含年份)
影评分 t_rating.rate

B.从answer6_A按照年份进行分组条件,按照评分>=4.0作为where过滤条件,按照count(years)作为排序条件进行查询
     需要查询的字段:电影的ID:answer6_A.years

            C.从answer6_A按照years=1998作为where过滤条件,按照评分作为排序条件进行查询
            需要查询的字段:电影的ID:answer6_A.moviename
            影评分:answer6_A.avgrate

(2) 完整SQL

A.需要将t_rating和t_movie表进行联合查询,将电影名当中的上映年份截取出来

create table answer6_A as
select  a.movieid as movieid, a.moviename as moviename, substr(a.moviename,-5,4) as years, avg(b.rate) as avgrate
from t_movie a join t_rating b on a.movieid=b.movieid 
group by a.movieid, a.moviename;
select * from answer6_A;

hive 练习影评案列_第12张图片

B.从answer6_A按照年份进行分组,按照评分>40作为where的过滤条件,按照count(years)作为排序条件进行查询.

select years, count(years) as total 
from answer6_A a 
where avgrate >= 4.0 
group by years 
order by total desc 
limit 1;

hive 练习影评案列_第13张图片

C.从answer6_A按照years=1998作为where过滤条件,按照评分作为排序条件进行查询.

create table answer6_C as
select a.moviename as name, a.avgrate as rate 
from answer6_A a 
where a.years=1998 
order by rate desc 
limit 10;
select 	* from answer6_c;

hive 练习影评案列_第14张图片

5.7求1997年上映的电影中,评分最高的10部Comedy类电影

(1)分析思路:

1、需求字段:电影id t_rating.movieid
电影名 t_movie.moviename(包含年份)
影评分 t_rating.rate
上映年份 xxx.years(最终查询结果可不显示)
电影类型 xxx.type(最终查询结果可不显示)

2、核心SQL:
A.需要电影类型,所有可以将第六步中求出answer6_A表和t_movie表进行联合查询
需要查询的字段:电影id answer6_A.movieid
电影名 answer6_A.moviename
影评分 answer6_A.rate
电影类型 t_movie.movietype 
           上映年份 answer6_A.years

B.从answer7_A按照电影类型中是否包含Comedy和按上映年份作为where过滤条件,按照评分作为排序条件进行查询,将结果保存到answer7_B中
    要查询的字段:电影的ID:answer7_A.id
电影的名称:answer7_A.name
电影的评分:answer7_A.rate

完整SQL:

A.需要电影类型,所有可以将第六步中求出answer6_A表和t_movie表进行联合查询

create table answer7_A as 
select b.movieid as id, b.moviename as name, b.years as years, b.avgrate as rate, a.movietype as type 
from t_movie a join answer6_A b on a.movieid=b.movieid;

在这里插入图片描述

select t.* from answer7_A t;

hive 练习影评案列_第15张图片
B.从answer7_A按照电影类型中是否包含Comedy和按照评分>=4.0作为where过滤条件,按照评分作为排序条件进行查询,将结果保存到answer7_B中

create table answer7_B as 
select t.id as id, t.name as name, t.rate as rate 
from answer7_A t 
where t.years=1997 and instr(lcase(t.type),'comedy') >0 
order by rate desc
limit 

在这里插入图片描述

select * from answer7_B;

hive 练习影评案列_第16张图片

5.8 该影片库中各种类型电影中平均最高的5部电影(类型,电影名,平均影评分)

(1) 分析思路

1、需求字段: 电影id movieid
电影名 moviename
影评分 rate(排序条件)
电影类型 type(分组条件)

2、核心SQL:
A.需要电影类型,所有需要将answer7_A中的type字段进行裂变,将结果保存到answer8_A中
需要查询的字段:电影id answer7_A.id

电影名 answer7_A.name(包含年份)

上映年份 answer7_A.years

影评分 answer7_A.rate

                            电影类型 answer7_A.movietype 

B.求TopN,按照type分组,需要添加一列来记录每组的顺序,将结果保存到answer8_B中

row_number() :用来生成 num字段的值
distribute by movietype :按照type进行分组
sort by avgrate desc :每组数据按照rate排降序
num:新列, 值就是每一条记录在每一组中按照排序规则计算出来的排序值

C.从answer8_B中取出num列序号<=5的

(2)完整SQL:

A.需要按照电影类型和上映年份进行分组,按照影评分进行排序,将结果保存到answer9_A中

create table answer8_A as 
select a.id as id, a.name as name, a.years as years, a.rate as rate, tv.type as type 
from answer7_A a 
lateral view explode(split(a.type,"\\|")) tv as type;
select * from answer8_A;

hive 练习影评案列_第17张图片
B.求TopN,按照type分组,需要添加一列来记录每组的顺序,将结果保存到answer8_B中

create table answer8_B as 
select id,name,years,rate,type,row_number() over(distribute by type sort by rate desc ) as num
from answer8_A;
select * from answer8_B;

hive 练习影评案列_第18张图片
C.从answer8_B中取出num列序号<=5的

hive 练习影评案列_第19张图片

5.9、求年评分最高的电影类型(年份,类型,影评分)

(1)分析思路

1、需求字段:电影id movieid

电影名 moviename

影评分 rate(排序条件)

电影类型 type(分组条件)

上映年份 years(分组条件)
2、核心SQL:

A.需要按照电影类型和上映年份进行分组,按照影评分进行排序,将结果保存到answer9_A中

需要查询的字段:

上映年份 answer7_A.years

影评分 answer7_A.rate

电影类型 answer7_A.movietype

B.求TopN,按照years分组,需要添加一列来记录每组的顺序,将结果保存到answer9_B中

C.按照num=1作为where过滤条件取出结果数据

(2)完整SQL

A.需要按照电影类型和上映年份进行分组,按照影评分进行排序,将结果保存到answer9_A中

create table answer9_A as 
select a.years as years, a.type as type, avg(a.rate) as rate 
from answer8_A a 
group by a.years,a.type 
order by rate desc;
select * from answer9_A

hive 练习影评案列_第20张图片

B.求TopN,按照years分组,需要添加一列来记录每组的顺序,将结果保存到answer9_B中

create table answer9_B as 
select years,type,rate,row_number() over (distribute by years sort by rate) as num
from answer9_A;
select * from  answer9_B;

hive 练习影评案列_第21张图片
C.按照num=1作为where过滤条件取出结果数据
hive 练习影评案列_第22张图片

5.10、每个地区最高评分的电影名,把结果存入HDFS(地区,电影名,影评分)

(1) 分析思路

1、需求字段:电影id t_movie.movieid

电影名 t_movie.moviename

影评分 t_rating.rate(排序条件)

地区 t_user.zipcode(分组条件)

2、核心SQL:
A.需要把三张表进行联合查询,取出电影id、电影名称、影评分、地区,将结果保存到answer10_A表中

需要查询的字段:电影id t_movie.movieid

电影名 t_movie.moviename

影评分 t_rating.rate(排序条件)

地区 t_user.zipcode(分组条件)

B.求TopN,按照地区分组,按照平均排序,添加一列num用来记录地区排名,将结果保存到answer10_B表中

C.按照num=1作为where过滤条件取出结果数据

(2)完整的SQL

A.需要把三张表进行联合查询,取出电影id、电影名称、影评分、地区,将结果保存到answer10_A表中

create table answer10_A as
select c.movieid, c.moviename, avg(b.rate) as avgrate, a.zipcode
from t_user a 
join t_rating b on a.userid=b.userid 
join t_movie c on b.movieid=c.movieid 
group by a.zipcode,c.movieid, c.moviename;
select t.* from answer10_A t;

hive 练习影评案列_第23张图片

B.求TopN,按照地区分组,按照平均排序,添加一列num用来记录地区排名,将结果保存到answer10_B表中

create table answer10_B as
select movieid,moviename,avgrate,zipcode, row_number() over (distribute by zipcode sort by avgrate) as num 
from answer10_A; 
select t.* from answer10_B t;

hive 练习影评案列_第24张图片
C.按照num=1作为where过滤条件取出结果数据并保存到HDFS上

insert overwrite directory "/movie/answer10/" select t.* from answer10_B t where t.num=1;

你可能感兴趣的:(大数据)