JAVA解析各种编码密钥对(DER、PEM、openssh公钥)

一、DER编码密钥对

先说下DER编码,是因为JCE本身是支持DER编码密钥对的解析的,可以参见PKCS8EncodedKeySpec和X509EncodedKeySpec.

DER编码是ASN.1编码规则中的一个子集,具体格式如何编排没有去了解,但最终呈现肯定的是一堆有规律的二进制组合而成。

PKCS#8定义了私钥信息语法和加密私钥语法,而X509定义证书规范,通常都会用DER和PEM进行编码存储,而在JAVA中则使用的

DER。


接下来看看如果通过DER编码的密钥对分别获取JAVA的公私钥对象。


1.下面一段是生成私钥对象的,传入参数是DER编码的私钥内容。

	@Override
	public PrivateKey generatePrivateKey(byte[] key) throws NoSuchAlgorithmException, InvalidKeySpecException {
		KeySpec keySpec = new PKCS8EncodedKeySpec(key);
		KeyFactory keyFactory = KeyFactory.getInstance("RSA");
		return keyFactory.generatePrivate(keySpec);
	}

2.下面是生成公钥对象的,传入参数是DER编码公钥内容,可以看到和生成私钥的部分非常相似。

	public PublicKey geneneratePublicKey(byte[] key) throws InvalidKeySpecException, NoSuchAlgorithmException{
		KeySpec keySpec = new X509EncodedKeySpec(key);
		KeyFactory keyFactory = KeyFactory.getInstance("RSA");
		return keyFactory.generatePublic(keySpec);
	}


二、PEM编码

PEM编码也是密钥对较常用的编码方式,openssl则是以PEM编码为主,相对DER对人可读性更强,以BASE64编码呈现,外围包上类似-----BEGIN RSA PRIVATE KEY-----。


JCE没有对PEM直接支持的方式,但是可以通过第三方包例如bouncycastle解析,当然如果想要自己理解pem编码结构,也可以自己写代码解析。


这里介绍下如何使用bouncycastle进行解析。

    	FileInputStream fis = new FileInputStream("id_rsa");
    	byte[] key = PrivateKeyUtils.readStreamToBytes(fis);
		Security.addProvider(new BouncyCastleProvider());
		ByteArrayInputStream bais = new ByteArrayInputStream(key);
		PEMReader reader = new PEMReader(new InputStreamReader(bais), new PasswordFinder() {
			
			@Override
			public char[] getPassword() {
				return "".toCharArray();
			}
		});
		KeyPair keyPair = (KeyPair) reader.readObject();
		reader.close();
		PublicKey pubk = keyPair.getPublic();
		System.out.println(pubk);
		PrivateKey prik = keyPair.getPrivate();
		System.out.println(prik);
		
		KeySpec keySpec = new X509EncodedKeySpec(pubk.getEncoded());
		KeyFactory keyFactory = KeyFactory.getInstance("RSA");
		System.out.println(keyFactory.generatePublic(keySpec));
		
		KeySpec keySpec2 = new PKCS8EncodedKeySpec(prik.getEncoded());
		System.out.println(keyFactory.generatePrivate(keySpec2));



看下这个输出结果

RSA Public Key
            modulus: c8f3e2d2e7fffe049127a115cab648fa9f55a7712d40868dccbddef9ebf030480a31f060e6c1ace2c53660e467cd173870367223dccea00ef2bdf6795757eb34fe1e8cfb63a0d333eefc9739029512df68108dd4b8054a12bdb206abd2ee7a727faa79604680c1337473ecd3d9a1a10b6cbc3af7862a74619ea7fe3a5bb2b89dded41dc5e4e4d5fcad169b85a599487929de1788e1e9a8d4efae4fda811d1e4d975b50d0d61b5887402ca975ec5e1d3ff193522b84746fe35ab00d073fed466786d9303f19c642c02cb1ad3a1ec6f0b7234e492e79500ee0bb1c1f07c23ae70af9b75aa35a6c75573d302cbf8f034341932dc371689b9f952388328c5277c117
    public exponent: 10001

RSA Private CRT Key
            modulus: c8f3e2d2e7fffe049127a115cab648fa9f55a7712d40868dccbddef9ebf030480a31f060e6c1ace2c53660e467cd173870367223dccea00ef2bdf6795757eb34fe1e8cfb63a0d333eefc9739029512df68108dd4b8054a12bdb206abd2ee7a727faa79604680c1337473ecd3d9a1a10b6cbc3af7862a74619ea7fe3a5bb2b89dded41dc5e4e4d5fcad169b85a599487929de1788e1e9a8d4efae4fda811d1e4d975b50d0d61b5887402ca975ec5e1d3ff193522b84746fe35ab00d073fed466786d9303f19c642c02cb1ad3a1ec6f0b7234e492e79500ee0bb1c1f07c23ae70af9b75aa35a6c75573d302cbf8f034341932dc371689b9f952388328c5277c117
    public exponent: 10001
   xxx

Sun RSA public key, 2048 bits
  modulus: 25367925677263221630752072905429434117596189021449325931333193529363239091429133073657699480437320802724298965580526553453499379398405915207286949216370963889754756788008021698178495726807109888833039800230667805051637457878962812581009778614579379073430749907762728841603230968432191178635884450213875555645164935313884823663096624318071901833679005494934145072511042211644746801428698070096755012497436134537077746175344235590315572214836519284172251946833712681076781034466422251569387242330311670205489884189790153154281087401570994337126054046621401176808489895271448688335849540690562754961439975230588159770903
  public exponent: 65537
Sun RSA private CRT key, 2048 bits
  modulus:          25367925677263221630752072905429434117596189021449325931333193529363239091429133073657699480437320802724298965580526553453499379398405915207286949216370963889754756788008021698178495726807109888833039800230667805051637457878962812581009778614579379073430749907762728841603230968432191178635884450213875555645164935313884823663096624318071901833679005494934145072511042211644746801428698070096755012497436134537077746175344235590315572214836519284172251946833712681076781034466422251569387242330311670205489884189790153154281087401570994337126054046621401176808489895271448688335849540690562754961439975230588159770903
  public exponent:  65537
  xxx
中间内容太多,略去了一部分,看下重点的public exponent部分,发现不同,但其实是一个是10进制输出,一个是16进制输出,所以在这里提个醒,这里生成过程没有错的。


三、openssh公钥

很多SSH公钥习惯使用openssh格式的,下面介绍下openssh格式的公钥如何解析,目前好像是没有官方库或者第三方库提供支持的。

openssh公钥呈现形式如

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAAAgQCW6qYq6m8gVOWLyTB1JGl1aLrJDOCIfErXWNUsNeUXg4UdAtSbkiA+Ta9Nx6oMR4w+OkPbxyivnzkZt1YpmDxrm1z99z81/VyVw+lue+3neRjTgfGMascG+46b7DpEKLXlfS2hwOA+4ooRIeR+LbQZVovy5SP6ZTngskiqcySYqQ== RSA-1024


以ssh-rsa打头,描述“RSA-1024”结尾的形式,中间是Base64编码。

这里过滤掉除了Base64外的其他部分,解码Base64得到公钥二进制内容。

这里二进制编码格式如下:

前11字节固定

0 0 0 7  's' 's' 'h' '-' ‘r' 's' 'a' 

紧接着4个字节为一个int值,表示public exponent所占字节长度

可通过移位符及相加或者BigInteger方式实现转换。

	public static int decodeUInt32(byte[] key, int start_index){
		byte[] test = Arrays.copyOfRange(key, start_index, start_index + 4);
		return new BigInteger(test).intValue();
//		int int_24 = (key[start_index++] << 24) & 0xff;
//		int int_16 = (key[start_index++] << 16) & 0xff;
//		int int_8 = (key[start_index++] << 8) & 0xff;
//		int int_0 = key[start_index++] & 0xff;
//		return int_24 + int_16 + int_8 + int_0;
	}

得到长度后,再从后一字节开始读取该长度字节作为public exponent的值,构造相应BigInteger。


再紧接着4个字节也是一个int值,表示modulus所占字节长度,同理转换得到长度。

再根据长度读取字节数组得到modulus值即可。


相应代码如下

	public static RSAPublicKey decodePublicKey(byte[] key) throws NoSuchAlgorithmException, InvalidKeySpecException{
		byte[] sshrsa = new byte[] { 0, 0, 0, 7, 's', 's', 'h', '-', 'r', 's',
		'a' };
		int start_index = sshrsa.length;
		/* Decode the public exponent */
		int len = decodeUInt32(key, start_index);
		start_index += 4;
		byte[] pe_b = new byte[len];
		for(int i= 0 ; i < len; i++){
			pe_b[i] = key[start_index++];
		}
		BigInteger pe = new BigInteger(pe_b);
		/* Decode the modulus */
		len = decodeUInt32(key, start_index);
		start_index += 4;
		byte[] md_b = new byte[len];
		for(int i = 0 ; i < len; i++){
			md_b[i] = key[start_index++];
		}
		BigInteger md = new BigInteger(md_b);
		KeyFactory keyFactory = KeyFactory.getInstance("RSA");
		KeySpec ks = new RSAPublicKeySpec(md, pe);
		return (RSAPublicKey) keyFactory.generatePublic(ks);
	}


四、其他编码

后续有机会再研究其他编码方式如何解析,不过可能bouncycastle已经提供了许多编码的解析,可以直接使用,具体没看,有兴趣的可以研究下。

下面有个网站介绍各种编码的,还有利用openssl进行各种转换的
http://myonlineusb.wordpress.com/2011/06/19/what-are-the-differences-between-pem-der-p7bpkcs7-pfxpkcs12-certificates/

你可能感兴趣的:(javaSE,信息安全)