作为量化投资中的一个重要分支,量化选股近年来越来越受到各类专业投资者的重视,并逐渐被广泛应用于国内许多量化对冲基金的投资策略之中。不过另一方面,许多对其感兴趣的投资人对其的了解,可能还只是停留在“雾里看花”的阶段。在这样的背景下,对其策略模型、运作过程加深一番了解,显然也非常有必要。
量化选股的概念
所谓量化选股,就是利用数量化的方法构建一揽子股票组合,期望该股票组合能够获得超越基准收益率的投资策略和投资行为。
从这个定义不难看出,相对于量化择时,量化选股在金融投资和资产管理中更突出的意义正是在于其“进攻性”。即抛开市场多空趋势不谈,量化选股更加关注的是,投资人所选取的投资策略在收益率上“攻击力”究竟有几何。尤其从相对于业绩基准或者能否取得更大正收益的角度,如何能构建“攻击力”更好的资产组合。而选股与择时,也基本可以认为是共同构成了证券投资这枚“硬币”的两面。
量化选股的经典策略模型
一般而言,量化选股的策略为两大类。一类是基本面量化选股,另一类则是市场行为量化选股。基本面选股,常用的经典策略主要有多因子模型、风格轮动模型和行业轮动模型3类。市场行为选股,则主要有资金流模型、动量反转模型、一致预期模型、趋势追踪模型和筹码选股模型5类。
1.多因子量化选股策略
作为国内外量化投资机构所采用最广泛的一种选股模型,多因子模型的基本原理是,采用一系列的因子作为选股标准,满足这些因子参数标准的股票则被买入,一旦不满足因子参数标准则被卖出,或被其他符合标准的股票替代。一般而言,多因子选股模型经常选取的筛选因子包括,PE(静态市盈率)、PEG(动态市盈率)、PB(市净率)、ROE(净资产收益率)、总市值、市销率、销售毛利率(GPR)等等。
下图就是一个典型的A股市场单因子回测数据。测试时间是2007年1月4日到2016年3月26日,回测条件是每次选取市场上前10个最符合单因子指标要求的股票(剔除所有的ST股票和*ST股票)进行持有,每五个交易日更换一次,交易成本设定为买卖双向共2‰。
值得注意的是,考虑到单因子在优秀个股筛选上的“单薄性”,且大多数单因子的有效性并不十分显著,绝大多数量化投资基金在实际的模型构建上,往往都会根据自己的大数据回测统计,剔除掉一些有效性偏低的因子,并排列组合出自己认为策略效果最佳的一些多因子模型,用于最终的股票筛选。
由此不难看出,各家量化投资机构采用的多因子模型,其核心的差异,或者说是其“核心竞争力”的差异,主要有两点。第一是选择的因子可能会有明显不同,第二则是对因子的组合和权重分配会有所不同。综合这两点,就会导致不同机构最终选择出的股票组合,可能会出现原理相同、但结果天差万别的情况。
基本面选股模型除了应用最广泛的多因子模型外,其他的经典策略模型,还包括风格轮动量化选股模型、行业轮动量化选股模型。
2.风格轮动模型
所谓风格轮动模型是利用市场的风格特征进行投资,比如有时候市场主流资金更加偏好小盘股,有时候则更加偏好大盘股。如果风格轮动模型精准地捕捉到风格转换的启动,则就可以通过该选股模型相应地构建合适的股票组合,获得显著的超额收益。
3.行业轮动模型
行业轮动模型,与风格轮动模型则有较大的相似性。由于经济周期或投资者预期的原因,总有一些行业在一波上涨趋势或下跌趋势中提前启动,其他行业之后逐步跟随。在这个周期过程中,依次对这些轮动的行业进行配置或做空,就是行业轮动模型所希望达到的目标。
除了以上三种基本面选股策略之外,市场行为量化选股近年来也日益被专业的量化投资人日益关注。这种以行为金融学为基础,更加侧重于市场博弈的量化选股策略,不仅越来越好地证明了其在许多市场运行周期中的有效性,而且还逐步与事件驱动策略糅合到一起,成为许多量化投资基金持续攻坚的一大重要方向。简单来说,市场行为量化选股常见的策略模型主要有以下5类。
1、资金流量化选股模型
资金流量化选股的基本原理,就是利用资金的流向和某一股票的在市场上的供需关系,来判断股票的涨跌。一般而言,如果资金持续集中流入某一只股票,则股票价格则会由于供不应求而出现不断上涨;而如果资金持续流出,则股票价格则会由于供应弱于需求而出现下跌。所以将资金流入流出的情况编成量化统计指标,则可以利用该指标,来判断全市场所有股票在未来一段时间的涨跌。从实际应用来看,近年来大智慧、同花顺等一些专业股票行情软件供应商,就已经涉足了更专业的个股资金流向数据,而这与资金流量化选股的基本原理基本大同小异。
2、动量波动量化选股模型
动量波动量化选股,主要就是跟踪股票的强弱变化情况。从行为金融学的角度来看,一般而言,过去一段时间明显强势的股票,在未来一段时间会大概率继续保持强势;过去一段时间明显弱势的股票,在未来一段时间往往继续弱势,这就叫做动量效应。另一方面,如果过去一段时间强的股票在未来一段时间出现走弱,过去一段时间弱势的股票在未来一段时间出现走强,则就被称为动量反转效应。如果模型判定动量效应将会持续,则买入该强势股;如果模型判断弱势股即将出现反转效应,则应该买入弱势股,反之亦然。
3、一致预期量化选股模型
一致预期是指市场上的投资者可能会对某些信息产生一致的看法,比如大多数分析师看好某一个股票,可能这个股票在未来一段时间会上涨;如果大多数分析师均看空某一个股票,可能这个股票在未来一段时间会下跌。一致预期策略,就是利用大多数分析师的看法来进行股票的买入卖出操作。另一方面,近年来有些专业从事于量化投资的金融投资机构或研究机构,同时也正从“市场情绪反向变化”的角度,采用相关大数据统计模型,寻找市场一致预期的“反转效应”。即从市场一致预期的角度,寻找大盘或个股跌无可跌、涨无可涨的择时和泽股机会。
4、趋势追踪量化选股模型
趋势追踪量化选股与动量波动量化选股策略较为相识,其主要的原理是跟踪并跟随市场趋势,与跟随个股动量波动有较大的相似性。其本质上,也是一种用量化手段跟随市场趋势选股、追涨杀跌的策略。判断趋势的指标有很多种,包括MA(均线)、EMA(指数平均数指标,也叫EXPMA指标)、MACD(指数平滑移动平均线)、量价结合等。
5、筹码选股量化选股模型
筹码量化选股策略的基本思路是,如果主力资金要拉升一只股票,会慢慢收集筹码;如果主力资金要对一只股票派发出货,则会慢慢分派筹码。所以根据备选个股的筹码分布和变动情况进行量化统计,就可以筛选出合适的股票标的。这种量化选股策略,与资金流量化选股也有较大的相似性。
推荐阅读:
1.一个量化策略师的自白(好文强烈推荐)
2.股票期货经典的量化交易策略都在这里了!(源码)
3.期货/股票数据大全查询(历史/实时/Tick/财务等)
4.当真躺着赚钱?量化交易的十大难题
5.从量化到高频交易,不可不读的五本书
6.如何有效的规避量化交易中的滑点?