一、接口简介
内部集成电路(IIC或者I2C)总线使用小数据负载连接简单的外部设备。传感器和执行器是常见的I2C使用案例,例如包含加速度计,温度计,LCD显示器,和电机驱动。
I2C总线是一种同步的串行接口:这意味着它依赖于共享的时钟信号来同步设备之间的数据传输。控制时钟信号的设备被称为master,其它所有连接的外设被认为是Slaves,每个设备连接到同一组数据信号以形成总线。
I2C设备连接使用3线接口:
- 共享时间信号(SCL);
- 共享数据线(SDA);
- 共同的接地参考(GND);
I2C仅支持半双工通信:因为所有的数据都是通过一根线连接。 所有的通信都是由master设备发起的,一旦主master传输完成slave必须响应。
** I2C支持在同一条总线上连接多个slave设备:不像SPI,slave设备使用I2C软件协议寻址。每个设备编程有一个唯一的地址**,并且仅仅响应master发送给地址的信息。每个slave设备必须有一个地址,即时总线仅仅包含一个单一的信号slave。
二、接口使用
1. 管理Slave设备连接
public class HomeActivity extends Activity {
// I2C Device Name
private static final String I2C_DEVICE_NAME = ...;
// I2C Slave Address
private static final int I2C_ADDRESS = ...;
private I2cDevice mDevice;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
// Attempt to access the I2C device
try {
PeripheralManagerService manager = new PeripheralManagerService();
mDevice = manager.openI2cDevice(I2C_DEVICE_NAME, I2C_ADDRESS);
} catch (IOException e) {
Log.w(TAG, "Unable to access I2C device", e);
}
}
}
2. 与寄存器通信
I2C Slave设备组织内容给可读或者可写的寄存器(单个字节数据由一个地址值引用):
- 可读寄存器:包含slave想要向master报告的数据,例如传感器值或者状态标识;
- 可写寄存器:包含master可以控制的配置数据;
一个常见的协议实现被称为System Management Bus(SMBus)存在于I2C顶部,以标准的方式和寄存器通信。SMBus命令由下面的两个I2C事务组成:
- 第一个事务标识代表了要访问的寄存器的地址,第二个是在该地址读或者写的数据。
- Slave设备的逻辑数据可能经常占用多个字节,从而包含多个寄存器地址。提供给API的地址始终是第一个寄存器的引用;
外设I/O提供了三种类型的SMBus命令来访问寄存器:
- 字节数据:readRegByte()和writeRegByte()来读或者写一个单独的8位寄存器数据。
- 字数据:readRegWord()和writeRegWord()来读或者写两个连续寄存器的值以一个16位litten-endian字。第
一个寄存器的地址被翻译为字中的最小有效字节(LSB),其次是最重要的字节(MSB)。 - 块数据:readRegBuffer()和writeRegBuffer()读或者写最多32个连续寄存器的值作为一个数组。
// Modify the contents of a single register
public void setRegisterFlag(I2cDevice device, int address) throws IOException {
// Read one register from slave
byte value = device.readRegByte(address);
// Set bit 6
value |= 0x40;
// Write the updated value back to slave
device.writeRegByte(address, value);
}
// Read a register block
public byte[] readCalibration(I2cDevice device, int startAddress) throws IOException {
// Read three consecutive register values
byte[] data = new byte[3];
device.readRegBuffer(startAddress, data, data.length);
return data;
}
3. 传输原始数据
当和一个I2C外设交互时,定义不同的SMBus寄存器,或许根本不使用寄存器,使用原始的raw()和write()方法对通过导线传递的字节数据完全控制。这些方法将会执行一个如下单独的I2C传输:
使用原始传输,设备将会在传输之前发送一个启动条件,然后一个停止条件。联合多个传输到一个“重复启动”条件是不可能的;
public void writeBuffer(I2cDevice device, byte[] buffer) throws IOException {
int count = device.write(buffer, buffer.length);
Log.d(TAG, "Wrote " + count + " bytes over I2C.");
}
4. 关闭连接
当你完成I2C端口通信,关闭这个连接,并释放资源。此外,在现有端口关闭之前,你不能打开一个新的连接。要想关闭连接,使用端口的close()方法;
public class HomeActivity extends Activity {
... ...
private I2cDevice mDevice;
@Override
protected void onDestroy() {
super.onDestroy();
if (mDevice != null) {
try {
mDevice.close();
mDevice = null;
} catch (IOException e) {
Log.w(TAG, "Unable to close I2C device", e);
}
}
}
}
三、案例演示
下面我们就通过使用i2c接口,获取bmp280温度传感器的温度数据来演示该接口的使用。
1. 硬件准备
- 树莓派开发板 1块
- 面包板 1块
- bmp280传感器
- 杜邦线(公对母)若干
2. 电路搭建
3. 代码编写
I2CDemo\app\src\main\java\com\chengxiang\i2cdemo\MainActivity.java
public class MainActivity extends AppCompatActivity {
private static final String I2C_ADDRESS = "I2C1";
private static final int TEMPERATURE_SENSOR_SLAVE = 0x77;
private static final int REGISTER_TEMPERATURE_CALIBRATION_1 = 0x88;
private static final int REGISTER_TEMPERATURE_CALIBRATION_2 = 0x8A;
private static final int REGISTER_TEMPERATURE_CALIBRATION_3 = 0x8C;
private static final int REGISTER_TEMPERATURE_RAW_VALUE_START = 0xFA;
private static final int REGISTER_TEMPERATURE_RAW_VALUE_SIZE = 3;
private TextView temperatureTextView;
private I2cDevice i2cDevice;
private final short[] calibrationData = new short[3];
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
temperatureTextView = (TextView) findViewById(R.id.temperature);
PeripheralManagerService peripheralManagerService = new PeripheralManagerService();
try {
i2cDevice = peripheralManagerService.openI2cDevice(I2C_ADDRESS, TEMPERATURE_SENSOR_SLAVE);
calibrationData[0] = i2cDevice.readRegWord(REGISTER_TEMPERATURE_CALIBRATION_1);
calibrationData[1] = i2cDevice.readRegWord(REGISTER_TEMPERATURE_CALIBRATION_2);
calibrationData[2] = i2cDevice.readRegWord(REGISTER_TEMPERATURE_CALIBRATION_3);
byte[] data = new byte[REGISTER_TEMPERATURE_RAW_VALUE_SIZE];
i2cDevice.readRegBuffer(REGISTER_TEMPERATURE_RAW_VALUE_START, data, REGISTER_TEMPERATURE_RAW_VALUE_SIZE);
if (data.length != 0) {
float temperature = compensateTemperature(readSample(data));
temperatureTextView.setText("temperature:" + temperature);
}
} catch (IOException e) {
e.printStackTrace();
}
}
@Override
protected void onDestroy() {
super.onDestroy();
if (i2cDevice != null) {
try {
i2cDevice.close();
i2cDevice = null;
} catch (IOException e) {
Log.w(TAG, "Unable to close I2C device", e);
}
}
}
private int readSample(byte[] data) {
// msb[7:0] lsb[7:0] xlsb[7:4]
int msb = data[0] & 0xff;
int lsb = data[1] & 0xff;
int xlsb = data[2] & 0xf0;
// Convert to 20bit integer
return (msb << 16 | lsb << 8 | xlsb) >> 4;
}
private float compensateTemperature(int rawTemp) {
float digT1 = calibrationData[0];
float digT2 = calibrationData[1];
float digT3 = calibrationData[2];
float adcT = (float) rawTemp;
float varX1 = adcT / 16384f - digT1 / 1024f;
float varX2 = varX1 * digT2;
float varY1 = adcT / 131072f - digT1 / 8192f;
float varY2 = varY1 * varY1;
float varY3 = varY2 * digT3;
return (varX2 + varY3) / 5120f;
}
}
4. 运行结果
按照上面的电路图,搭建电路如下:
运行程序,通过传感器检测的温度显示在屏幕上:
1.抛弃各种找元器件的烦恼,来“1024工场”旗舰店,一次性买到你所想要的:树莓派套装—专为Android Things打造。
电脑用户,点击如下链接进入淘宝宝贝页面:
https://item.taobao.com/item.htm?spm=686.1000925.0.0.3f11c9ed68fPu7&id=549263158263
手机用户,打开淘宝客户端扫描二维码:
2.完整和持续更新的《使用Android打开物联网开发大门——Andoid Thigns开发》文档,欢迎大家阅读!
https://www.kancloud.cn/workshop1024/android_things_develop/360773
3.新技术,新未来!欢迎大家关注“1024工场”微信服务号,时刻关注我们的最新的技术讯息。(甭客气!尽情的扫描或者长按!)
4.加入“Android Things开发”QQ讨论群,一起学习一起Hi。(甭客气!尽情的扫描或者长按!)